ENGLISH + - × ÷

SHARP

SCIENTIFIC CALCULATOR

MODEL EL-510RT

OPERATION MANUAL

PRINTED IN CHINA

18CSC(TINSEA055THMV)

INTRODUCTION

About the calculation examples (including some formulas and tables), refer to the reverse side of the manual. Refer to the number on the right of each title on the manual for use. After reading this manual, store it in a convenient location for future reference.

Operational Notes

- Do not carry the calculator in the back pocket of slacks or trousers.
 Do not subject the calculator to extreme temperatures.
- Do not subject the calculator to extrem
 Do not drop it or apply excessive force.
- Clean only with a soft, dry cloth. Avoid using a rough cloth or
- anything else that may cause scratches. 5. Do not use or store the calculator where fluids can splash onto it.
- Do not use or store the calculator where fluids can splash onto it.
 This product, including accessories, may change due to upgrading without prior potice.
- Press the RESET switch (on the back), with the tip of a ball-point pen or similar object, only in the following cases. <u>Do not use an</u> <u>object with a breakable or sharp tip</u>. Note that pressing the RESET switch erases all data stored in memory.
- · When using for the first time
- · After replacing the battery
- To clear all memory contents
- When an abnormal condition occurs and all keys are inoperative.
 If service should be required on this calculator, use only a SHARP servicing dealer, SHARP approved service facility, or SHARP repair service where available.

SHARP will not be liable nor responsible for any incidental or consequential economic or property damage caused by misuse and/or malfunctions of this product and its peripherals, unless such liability is acknowledged by law.

DISPLAY

- Symbol

Mantissa Exponent

- (During actual use not all symbols are displayed at the same time.)
- ←/→ : Appears when the entire equation cannot be displayed. Press ●/ ► to see the remaining (hidden) section.
 2ndF : Appears when 2ndF is pressed, indicating that the functions
- shown in orange are enable.

 A
 : Indicates that 2ndF)ALPHA or STO((RCL) has been
- pressed, and entry (recall) of memory contents and recall of statistics can be performed.
- HYP : Indicates that (hyp) has been pressed and the hyperbolic functions are enabled. If (2ndF) (hyp) are pressed, the symbols "2ndF HYP" appear, indicating that inverse hyperbolic functions are enabled.

FIX/SCI/ENG: Indicates the notation used to display a value and changes each time [2ndF] [FSE] are pressed.

- DEG/RAD/GRAD: Indicates angular units and changes each time DRG is pressed.
- STAT : Appears when statistics mode is selected.
- Indicates that a numerical value is stored in the independent memory
- */1/1/ Appears when the results of coordinate conversions are displayed.

BEFORE USING THE CALCULATOR

Key Notation Used in this Manual

In this manual, key operations are described as follows:

 x^2 To specify x^2 :2ndF χ^2 ExpTo specify Exp:Exp

Functions that are printed in orange above the key require

[2ndF] to be pressed first before the key. Numbers are not shown as keys, but as ordinary numbers. Power On and Off

Press ON/C to turn the calculator on, and 2ndF OFF to turn it off.

Editing the Equation

- If you need to delete a number, move the cursor to the number you wish to delete then press DEL. If the cursor is located at the right end of an equation, the DEL key will function as a back space key.
- If you need to insert a number, more the cursor to the place immediately after where you wish to insert the number then enter the number.

Clearing Methods

There are three clearing methods as follows:

Clearing operation	(Entry (Display)	M* ¹	X,Y,r,θ*² STAT, ANS
ON/C		0	×	×
2ndF CA		0	×	0
RESET		0	0	0
O:Clear	× : Retain			

- *1 Independent memory M
- *2 Temporary memories (X, Y, r, $\theta),$ statistical data, and last answer memory.

Priority Levels in Calculation

This calculator performs operations according to the following priority: (1) Fractions (1 \sqcap 4, etc.) (2) Functions preceded by their argument (x⁻¹, x², n!, etc.) (3) Y^x, x^{\checkmark} (4) Implied multiplication of a memory value (2Y, etc.) (5) Functions followed by their argument (sin, cos, etc.) (6) Implied multiplication of a function (2sin30, etc.)

(7) nCr, nPr, GCD, LCM (8) ×, ÷ (9) +, −

- (¹) =, M+, M−, ⇒M, ►DEG, ►RAD, ►GRAD, DATA, CD, \rightarrow r θ , \rightarrow xy and other calculation ending instruction
- If parentheses are used, parenthesized calculations have precedence over any other calculations.

INITIAL SETUP

Mode Selection

Normal mode: (2ndF) (MODE) 0 Used to perform arithmetic operations and function calculations. Statistics mode: (2ndF) (MODE) 1

Used to perform statistical calculations.

When executing mode selection, temporary memories, statistical data and last answer memory will be cleared even when reselecting the same mode.

Selecting the Display Notation and Decimal Places

The calculator has four display notation systems for displaying calculation results. When FIX, SCI, or ENG symbol is displayed, the number of decimal places can be set to any value between 0 and 9.

Displayed values will be reduced to the corresponding number of digits.

[Floating point]	ON/C 100000 ÷	3 = 33'333.33333
\rightarrow [Fixed decimal point]	2ndF FSE	33'333.33333
[TAB set to 2]	2ndF TAB 2	33'333.33
→[SCIentific notation]	2ndF FSE	3.33×10 ⁴
→[ENGineering notation]	2ndF FSE	33.33×10 ³
\rightarrow [Floating point]	2ndF FSE	33'333.33333

 If the value for floating point system does not fit in the following range, the calculator will display the result using scientific notation system: 0.00000001≤|x|≤999999999

Determination of the Angular Unit

recall In this calculator, the following three angular units can be specified.

DFG (°).

SCIENTIFIC CALCULATIONS

- Press 2ndF MODE
 o to select the normal mode.
- In each example, press (ON/C) to clear the display.
- If the FIX, SCI, or ENG indicator is displayed, clear the indicator by pressing 2ndF FSE.

Arithmetic Operations/Constant Calculations

The closing parenthesis) just before = or M+ may be omitted.
 The addend becomes a constant. Subtraction and division are

- performed in the same manner. The multiplicand becomes a constant. • When performing calculations using constants, constants will be displayed as $K_{\rm c}$
- Functions

Refer to the calculation examples of each function.

Random Numbers

A pseudo-random number with three significant digits can be generated by pressing 2ndF) (wwww) (=). To generate the next random number, press (=). You can perform this function in the normal and statistics modes. • Random numbers use memory Y. Each random number is generated on the basis of the value stored in memory Y (pseudo-random number series).

Angular Unit Conversions

Each time (2ndF) DRG are pressed, the angular unit changes in sequence.

Memory Calculations

This calculator has four temporary memories (X, Y, r, θ) , one independent memory (M) and one last answer memory (ANS). Independent memory and temporary memories are only available in the normal mode.

[Temporary memories (X, Y, r, θ)]

Press (TTO) and a variable key to store a value in memory. Press (TCL) and a variable key to recall the value from that memory. To place a variable in an equation, press (2ndF) (ALPHA) and a variable key. Use of (TCL) or (2ndF) (ALPHA) will recall the value stored in memory using up to 14 dioits Depth error (Error 3)

Calculation Ranges

performed internally.)

[5]

[6]

[7]

[8]

12

45.

[9]

[10]

Caution

*5 buffers in STAT mode

Equation too long (Error 4):

The available number of huffers was exceeded. (There are 10 huffers*

for numeric values and 24 huffers for calculation instructions)

The equation exceeded its maximum input buffer (159 characters).

Within the ranges specified below this calculator is accurate to +1 in the

least significant digit of the mantissa. When performing continuous calculations

(including chain calculations) errors accumulate leading to reduced accuracy

(This is the same for y^x , $x\sqrt{-}$, e^x , ln, etc., where continuous calculations are

If the absolute value of an entry or a final or intermediate result of a calculation

is less than 10⁻⁹⁹, the value is considered to be 0 in calculations and in the display.

Improper handling of batteries can cause electrolyte leakage or explosion.

When installing, orient the battery properly as indicated in the calculator.

The battery is factory-installed before shipment, and may be exhausted

If the display has poor contrast or nothing appears on the display even

when (ON/C) is pressed in dim lighting, it is time to replace the battery.

An exhausted battery left in the calculator may leak and damage the calculator

Fluid from a leaking battery accidentally entering an eve could result

in serious injury. Should this occur, wash with clean water and

Should fluid from a leaking battery come in contact with your skin

If the product is not to be used for some time, to avoid damage to

the unit from a leaking battery, remove it and store in a safe place.

Make sure that the display appears as shown below. If the display

This calculator will turn itself off to save battery power if no key is pressed

Mantissas of up to 14 digits

1.5V ... (DC):Backup battery

0°C - 40°C (32°F - 104°F)

Built-in solar cells

External dimensions: 76 mm (W) × 135 mm (D) × 10 mm (H)

and hard case

SHARP

SHARP CORPORATION

24 calculations 10 numeric values

(5 numeric values in STAT mode)

(Alkaline battery (LR1130) × 1)

3" (W) × 5-5/16" (D) × 13/32" (H)

Approx. 3000 hours when continuously

displaying 55555 at 25°C (77°F), using the

Approx. 66 g (0.15 lb) (including battery)

Battery × 1 (installed), operation manual,

Scientific calculations, statistical calculations, etc

does not appear as shown, remove the battery, reinstall it, and

(Fig.

(Fig 2)

Й

EL510BT(LQ1)-1

before it reaches the service life stated in the specifications.

[11]

An equation must be shorter than 159 characters.

 Calculation ranges ±10⁻⁹⁹ ~ ±9.999999999 × 10⁹⁹ and 0.

Be sure to observe the following handling rules:

Make sure the new battery is the correct type.

or clothes, immediately wash with clean water.

· Keep batteries out of the reach of children.

1. Turn the power off by pressing (2ndF) (OFF)

4. Remove the used battery by prving it out with

a hall-point pen or other similar pointed

5. Install one new battery. Make sure the "+"

7. Press the RESET switch (on the back).

use and other factors) alkaline battery only

Do not leave an exhausted battery inside the product.

· Explosion risk may be caused by incorrect handling.

· Do not throw batteries into a fire as they may explode.

BATTERY REPLACEMENT

Notes on Battery Replacement

When to Replace the Battery

immediately consult a doctor

Replacement Procedure

device, (Fig. 2)

side is facing up.

Remove one screw. (Fig. 1)
 Lift the battery cover to remove

6. Replace the cover and screw.

check the display once again.

Automatic Power Off Function

for approximately 10 minutes.

SPECIFICATIONS

Internal calculations:

Pending operations:

Calculations

Power source:

Operating time:

Weight ·

Accessories

HARD CASE

(varies according to

Operating temperature:

[Independent memory (M)]

In addition to all the features of temporary memories, a value can be added to or subtracted from an existing memory value.

[Last answer memory (ANS)]

The calculation result obtained by pressing = or any other calculation ending instruction is automatically stored in the last answer memory.

Chain Calculations

This calculator allows the previous calculation result to be used in the following calculation. The previous calculation result will not be recalled after entering multiple instructions.

Fraction Calculations

This calculator performs arithmetic operations and memory calculations using fractions, and conversion between a decimal number and a

fraction. If the number of digits to be displayed is greater than 10, the number is converted to and displayed as a decimal number.

Time, Decimal and Sexagesimal Calculations

Conversion between decimal and sexagesimal numbers can be performed. In addition, the four basic arithmetic operations and memory calculations can be carried out using the sexagesimal system.

Coordinate Conversions

What is the LCM of 15 and 9?

sx

 σx

п

Σx

Σx

Data DATA

[Data Correction]

Correction prior to pressing (DATA):

Statistical Calculation Formulas

equal to or greater than 1×10^{100}

the denominator is zero.

Error Codes and Error Types

Ex. 2 (2ndF) →*r*θ

equals or exceeds 10¹⁰

An attempt was made to divide by 0.

Calculation error (Error 2):

Syntax error (Error 1):

Correction after pressing (DATA):

Delete incorrect data with (ON/C)

[Data Entry]

[1]

[2]

[3]

[4]

.

Errors

Before performing a calculation, select the angular unit.

Calculating the Greatest Common Divisor (GCD)

Calculating the Least Common Multiple (LCM)

Press (2ndF) (MODE) 1 to select statistics mode.

STATISTICAL CALCULATIONS

The following statistics can be obtained

- The calculation result is automatically stored in memories (X, Y, r, $\theta).$

(ON/C) 15 (2ndF) (LCM) 9 =

What is the GCD of 24 and 36? [ON/C] 24 [2ndF] [GCD] 36 [=

Mean of samples (x data)

Sum of samples (x data)

Number of samples

Sample standard deviation (x data)

Sum of squares of samples (r data)

Data (FRQ(,)) frequency (DATA) (To enter multiples of the same data)

Press b to confirm the latest entry and press (2ndF) (CD) to delete it.

In the statistical calculation formulas, an error will occur when:

• an attempt is made to take the square root of a negative number.

ERROR AND CALCULATION RANGES

Edit the equation or press ON/C to clear the equation

An attempt was made to perform an invalid operation.

a mathematically illegal operation is attempted.

the absolute value of the intermediate result or calculation result is

An error will occur if an operation exceeds the calculation ranges, or if

When an error occurs, pressing () automatically moves

the cursor back to the place in the equation where the error occurred.

The absolute value of an intermediate or final calculation result

The calculation ranges were exceeded while performing calculations

Entered data are kept in memory until (2ndF) CA or (2ndF) (MODE) 1

are pressed. Before entering new data, clear the memory contents

Population standard deviation (x data)

ENGLISH +-×÷

EL-510RT

CALCULATION EXAMPLES EXEMPLES DE CALCUL ANWENDUNGSBEISPIELE

45+285÷3=	ON/C 45 + 285 ÷ 3	= 140
$\frac{18+6}{15-8} =$	() 18 + 6 () ÷ () 15 - 8 =) 3.42857142
42×(-5)+120=	42 × (-) 5 + 120	= -90
(5×10 ³)÷(4×10 ⁻³)=	5 Exp 3 ÷ 4 Exp (-) 3 =	1'250'000
34 <u>+57</u> =	34 (+) 57 (=)	9 1
45 <u>+57</u> =	45 =	102
<u>68×</u> 25=	68 × 25 =	1'700
<u>68×</u> 40=	40 💷	2'720
[2]		
sin60[°]=	ON/C sin 60 =	0.86602540
$\cos\frac{\pi}{4}$ [rad]=	DRG cos (π ÷	4 0.70710678
tan ⁻¹ 1=[g]	DRG 2ndF (tan-1) 1 = DRG	50
(cosh 1.5 + sinh 1.5) ² =	ON/C (hyp) cos 1.5 + hyp sin 1.5) 2ndF x ²	20.0855369
tanh ⁻¹ 57 =	2ndF) arc hyp) (tan) (5 ÷ 7) =	0.89587973
In 20 =	(2ndF) In 20 =	2.99573227
log 50 =	2ndF log 50 =	1.69897000
e ³ =	$2ndF$ e^x 3 =	20.0855369
10 ^{1.7} =	(2ndF) 10 ^x 1.7 =	50.1187233
$\frac{1}{6} + \frac{1}{7} =$	6 (2ndF) (<i>X</i> ⁻¹) + 7 (2ndF) (<i>X</i> ⁻¹) =	0.30952380
$8^{-2} - 3^4 \times 5^2 =$	$8 \underbrace{y^{x}}_{4 \times 5} \underbrace{(-)}_{2 \times 5} 2 \underbrace{-}_{2 \times 5} 3 \underbrace{y^{x}}_{-}$) -2'024.98437
$(12^3)^{\frac{1}{4}} =$	$12 y^x 3 y^x 4$ $(2ndF) x^{-1} =$	6.44741959
8 ³ =	8 $(2ndF)$ (χ^3) =	51.
$\sqrt{49} - 4\sqrt{81} =$	2ndF√ 49 - 4 2ndF 81 =	(x/)
³ √27 =	(2ndF) ∛27(=	
4! =	4 (2ndF) n! =	24
10P3=	10 (2ndF) (<i>n</i> P <i>r</i>) 3 =	72
₅ C ₂ =	5 (2ndF) nCr 2 =	1
500×25%=	500 × 25 (2ndF) %	12:
120÷400=?%	120 ÷ 400 (2ndF) %	31
500+(500×25%)=	500 (+) 25 (2ndF) %	62:
/		

	$\theta = \sin^{-1}x, \theta = \tan^{-1}x$	$\theta = \cos^{-1} x$
DEG	$-90 \le \theta \le 90$	$0 \le \theta \le 180$
RAD	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$0 \leq \theta \leq \pi$
GRAD	$-100 \le \theta \le 100$	$0 \le \theta \le 200$

[3]		
$90^{\circ} \rightarrow [rad]$	ON/C 90 (2ndF) DRG	1.570796327
\rightarrow [g]	2ndF DRG	100.
$\rightarrow [^{\circ}]$	(2ndF) (DRG)	90.
sin ⁻¹ 0.8 = [°]	(2ndF) (sin ⁻¹) 0.8 (=)	53.13010235
\rightarrow [rad]	2ndF DRG	0.927295218
\rightarrow [g]	(2ndF) DRG	59.03344706 53.13010235
\rightarrow [°]	(2ndF)(DRG)	55.15010255
[4]	<u> </u>	
$0.4 \cdot (0.0)$) 16. 1.5
$24 \div (8 \times 2) = (8 \times 2) \times 5 =$	24 ÷ (RCL) M =	1.5 80.
(8×2)×5=		0.
\$150×3:M1	ON/C STO M 150 × 3 M+	450.
+)\$250:M2 =M1+250	250 M+	450. 250.
-)M2×5%:Discount	(RCL) (M) (X) 5 (2ndF)	
Total=M	(2ndF) M- (RCL) M	665.
\$1= ¥110		110.
¥26,510=\$?	26510 (÷) (RCL) (Y) (=	
\$2,750=¥?	2750 × RCL Y =	302 [°] 500.
r = 3cm	3(STO)(r)	3.
$\pi r^2 = ?$	(T) (2ndF) (ALPHA)	
	(1) $(2ndF)$ (X^2) =	28.27433388
$\frac{24}{4+6} = 2.4(A)$	24 ÷ (4 + 6) = 2.4
3×(A)+60÷(A)=	$3 \times \text{ANS} + 60 \div$	
		32.2
[5]		
6+4=ANS	ON/C) 6 + 4 =	10.
ANS+5	(+)5(=)	15.
44+37=ANS	44 + 37 =	81.
√ANS=	(2ndF) (√ =)	9.
[6]		
1 4 5		
3 + 4 = [a - 1]	ON/C 3 (ab/c) 1 (ab/c) 2 (+
	4 (ab/c) 3 (=	<i>4</i> _□ <i>5</i> _□ <i>6</i> *
→[a.xxx]	4 (ab/c) 3 = (ab/c)	4 ┌5 ┌ 6 * 4.8333333333
\rightarrow [a.xxx] \rightarrow [d/c]	4 (ab/c) 3 = (ab/c) (2ndF) (d/c)	4 ┌5 ┌6 * 4.833333333 29 ┌ 6
$\rightarrow [a.xxx]$ $\rightarrow [d/c]$ $10^{\frac{2}{3}} =$	$\begin{array}{c} 4 \ (ab_{C} \ 3 \ = \ \\ ab_{C} \ \\ 2ndF \ (ac \) \ \\ 2ndF \ (10^{\circ} \ 2 \ (ab_{C} \) \ 3 \ = \) \end{array}$	$4_{\Box} 5_{\Box} 6^{*}$ 4.833333333 29_{\Box} 6 4.641588834
$\rightarrow [a.xxx]$ $\rightarrow [d/c]$ $10^{\frac{2}{3}} =$ $(\frac{2}{3})^{-1} =$	4 (ab/c) 3 = (ab/c) (2ndF) (d/c)	4 ┌5 ┌ 6 * 4.833333333 29 ┌ 6
$\rightarrow [a.xxx]$ $\rightarrow [d/c]$ $10^{\frac{2}{3}} =$	$\begin{array}{c} 4 \ (ab_{C} \ 3 \ = \ \\ ab_{C} \ \\ 2ndF \ (ac \) \ \\ 2ndF \ (10^{\circ} \ 2 \ (ab_{C} \) \ 3 \ = \) \end{array}$	$4_{\Box} 5_{\Box} 6^{*}$ 4.833333333 29_{\Box} 6 4.641588834
$\frac{10^{\frac{2}{3}}}{(\frac{2}{3})^{-1}}=$	$\begin{array}{c} 4 \ ab_{c} \ 3 \ = \\ ab_{c} \\ 2ndF \ dc \\ 2ndF \ 10^{2} \ 2 \ ab_{c} \ 3 \ = \\ 2 \ ab_{c} \ 3 \ 2ndF \ \chi^{-1} \ = \\ \end{array}$	$4 {}_{\Gamma}5 {}_{\Gamma}6 *$ 4.833333333 29 {}_{\Gamma}6 4.641588834 $1 {}_{\Gamma}1 {}_{\Gamma}2$ 2 {}_{\Gamma}3 7
$\rightarrow [a.xxx]$ $\rightarrow [d/c]$ $10^{\frac{2}{3}} =$ $(\frac{2}{3})^{-1} =$ $\sqrt{\frac{4}{9}} =$ $\frac{2+3}{7} =$	$\begin{array}{c} 4 \ (ab_{c} \ 3 \ = \ ab_{c} \ 2ndF \ (ab_{c} \ 3 \ = \ ab_{c} \ 2ndF \ (ab_{c} \ 3 \ = \ ab_{c} \ 3 \ (ab_{c} \ 3 \ = \ ab_{c} \ 3 \ (ab_{c} \ 3 \ = \ ab_{c} \ 3 \ (ab_{c} \ 3 \ = \ ab_{c} \ ab_{c} \ 3 \ = \ ab_{c} \ ab_{c} \ 3 \ = \ ab_{c} \ ab_{$	$4 {}_{\Gamma} 5 {}_{\Gamma} 6^{*}$ 4.833333333 29 {}_{\Gamma} 6 4.641588834 $1 {}_{\Gamma} 1 {}_{\Gamma} 2$ 2 {}_{\Gamma} 3 7 7 5 {}_{\Gamma} 7
$ \rightarrow [a.xxx] \rightarrow [d/c] 10^{\frac{2}{3}} = (\frac{2}{3})^{-1} = \sqrt{\frac{4}{9}} = \frac{2+3}{7} = 1.25 + \frac{2}{5} = [a.xxx] $	$\begin{array}{c} 4 (ab_{c} 3) = \\ ab_{c} \\ 2ndF (ac) \\ 2ndF (ac) \\ 2ndF (ac) \\ 2ndF (ac) \\ 3 (adF X^{-1}) = \\ 2 (ab_{c} 3) (adF X^{-1}) = \\ 2 (ab_{c} 3) (ab_{c} 9) = \\ (ab_{c} 2) + (ab_{c} 3) (ab_{c} 6) \\ = \\ 1.25 + (ab_{c} 3) = \\ 1.25 + (ab_{c} 3) = \\ \end{array}$	$4 {}_{\!$
$ \rightarrow [a.xxx] \rightarrow [d/c] 10^{\frac{2}{3}} = (\frac{2}{3})^{-1} = \sqrt{\frac{4}{9}} = \frac{2+3}{7} = 1.25 + \frac{2}{5} = [a.xxx] $	$\begin{array}{c} 4 \ (ab_{c}) \ 3 \ = \\ \underline{ab_{c}} \\ 2ndF \ (dc) \\ \hline 2ndF \ (dc) \\ \hline 2ndF \ (dc) \ 3 \ = \\ 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ \hline 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ \hline 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ \hline 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ \hline 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ \hline 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ \hline 1.25 \ + \ 2 \ (ab_{c}) \ 5 \ = \\ \hline ab_{c} \ \end{array}$	$4 {}_{\Gamma} 5 {}_{\Gamma} 6^{*}$ $4.8333333333333333333333333333333333333$
$ \rightarrow [a.xxx] $ $ \rightarrow [d/c] $ $ 10^{\frac{2}{3}} = $ $ (\frac{2}{3})^{-1} = $ $ \sqrt{\frac{4}{9}} = $ $ 1.25 + \frac{2}{5} = [a.xxx] $ $ \rightarrow [a_c^b] $	$\begin{array}{c} 4 \ abc 3 = \\ abc \\ 2ndF \ dc \\ \hline \\ 2ndF \ 10^{T} 2 \ abc \\ 3 = \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 9 = \\ \hline \\ \hline \\ 2 \ + 3 \ abc \\ 5 = \\ \hline \\ abc \\ abc \\ \end{array}$	$4 {}_{\!$
$ \rightarrow [a.xxx] \rightarrow [d/C] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =\frac{2+3}{7} =1.25 + \frac{2}{5} = [a.xxx]→ [abC]$	$\begin{array}{c} 4 \ abc 3 = \\ abc \\ 2ndF \ dc \\ \hline \\ 2ndF \ 10^{T} 2 \ abc \\ 3 = \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 9 = \\ \hline \\ \hline \\ 2 \ + 3 \ abc \\ 5 = \\ \hline \\ abc \\ abc \\ \end{array}$	$4 {}_{\Gamma} 5 {}_{\Gamma} 6^{*}$ $4.8333333333333333333333333333333333333$
$ → [a.xxx] → [a/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =\frac{2+3}{7} =1.25 + \frac{2}{5} = [a.xxx]→ [ab/c](7)12°39' 18.05"$	$\begin{array}{c} 4 \ (ab_{c}) \ 3 \ = \\ \hline ab_{c} \ 2ndF \ (dc) \ 2ndF \ (dc) \ 3 \ = \\ 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ \hline 2 \ (ab_{c}) \ 3 \ (ab_{c}) \ 3 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 9 \ = \\ \hline (ab_{c}) \ 2 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ (ab_{c}) \ 5 \ = \\ \hline (ab_{c}) \ 3 \ (ab_{c}) \ 5 \ (ab_{c}) \ (ab_{c}) \ 5 \ (ab_{c}) \ (ab_{c}) \ 5 \ (ab_{c}) \ (ab_$	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =\frac{2+3}{7} =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a^{b}_{c}](7)12°39'18.05"\rightarrow [10]123.678 → [60]$	$\begin{array}{c} 4 \ (ab_{c}) \ 3 \ = \\ \hline ab_{c} \ 2ndF \ (dc) \ 2ndF \ (dc) \ 2ndF \ (dc) \ 3 \ = \\ 2 \ (ab_{c}) \ 3 \ (2ndF) \ (X^{-1}) \ = \\ 2 \ (ab_{c}) \ 3 \ (2ndF) \ (X^{-1}) \ = \\ 2 \ (ab_{c}) \ 3 \ (2ndF) \ (X^{-1}) \ = \\ 2 \ (ab_{c}) \ 3 \ (2ndF) \ (X^{-1}) \ = \\ \hline (2 \ (+) \ 3 \ (2ndF) \ (x^{-1}) \ = \\ (2 \ (+) \ 3 \ (x^{-1}) \ $	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [a.xxx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =\frac{2+3}{7} =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a^{b}_{c}](7)12°39'18.05"\rightarrow [10]123.678 → [60]3h30m45s +$	$\begin{array}{c} 4 \ (abc) 3 \ = \\ abc \\ 2ndF \ (dc) \\ \hline \\ 2 \ (abc) 3 \ (2ndF) \ (x^{-1}) \ = \\ \hline \\ 2 \ (abc) 3 \ (2ndF) \ (x^{-1}) \ = \\ \hline \\ 2 \ (abc) 3 \ (2ndF) \ (x^{-1}) \ = \\ \hline \\ 2 \ (abc) 3 \ (2ndF) \ (x^{-1}) \ = \\ \hline \\ \hline \\ 2 \ (abc) 3 \ (2ndF) \ (x^{-1}) \ = \\ \hline \\ \hline \\ 125 \ (x^{-1}) \ (x^$	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \begin{array}{l} \rightarrow [a.xxx] \\ \rightarrow [d/c] \\ 10^{\frac{2}{3}} = \\ (\frac{2}{3})^{\cdot 1} = \\ \hline \sqrt{\frac{4}{9}} = \\ \frac{2+3}{7} = \\ 1.25 + \frac{2}{5} = [a.xxx] \\ \rightarrow [a\frac{b}{c}] \\ \hline \end{array} $ $ \begin{array}{l} 12^{\circ}39^{\circ} 18.05^{"} \\ \rightarrow [10] \\ 123.678 \rightarrow [60] \\ \end{array} $	$\begin{array}{c} 4 \ (ab_{c}) \ 3 \ = \\ \hline ab_{c} \ 2ndF \ (dc) \ 2ndF \ (dc) \ 2ndF \ (dc) \ 3 \ = \\ 2 \ (ab_{c}) \ 3 \ (2ndF) \ (X^{-1}) \ = \\ 2 \ (ab_{c}) \ 3 \ (2ndF) \ (X^{-1}) \ = \\ 2 \ (ab_{c}) \ 3 \ (2ndF) \ (X^{-1}) \ = \\ 2 \ (ab_{c}) \ 3 \ (2ndF) \ (X^{-1}) \ = \\ \hline (2 \ (+) \ 3 \ (2ndF) \ (x^{-1}) \ = \\ (2 \ (+) \ 3 \ (x^{-1}) \ $	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [a.xxx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =\frac{2+3}{7} =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a^{b}_{c}](7)12°39'18.05"\rightarrow [10]123.678 → [60]3h30m45s +$	$\begin{array}{c} 4 \ abc 3 = \\ abc \\ 2ndF \ dc \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ \hline \\ \hline \\ 2 \ abc \\ \hline \\ 123 \ comp \ abc \ abc \\ 123 \ comp \ abc \ a$	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [a.xxx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =2+37 =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a_{c}^{b}](7)12°39' 18.05"\rightarrow [10]123.678 → [60]3h30m45s +6h45m36s = [60]$	$\begin{array}{c} 4 \ (abc) 3 \ = \\ abc \\ 2ndF \ (dc) \\ \hline \\ 2 \ (abc) 3 \ (2ndF \ X^{-1} \ =) \\ \hline \\ 2 \ (abc) 3 \ (2ndF \ X^{-1} \ =) \\ \hline \\ 2 \ (abc) 3 \ (2ndF \ X^{-1} \ =) \\ \hline \\ 2 \ (abc) 3 \ (2ndF \ X^{-1} \ =) \\ \hline \\ 2 \ (abc) 3 \ (2ndF \ X^{-1} \ =) \\ \hline \\ (abc) 3 \ (abc) 3 \ (abc) 3 \ (abc) 3 \\ \hline \\ (abc) 3 \ (abc) 3 \ (abc) 3 \\ \hline \\ 3 \ (abc) 3 \ (abc) 3 \ (abc) 3 \\ \hline \\ 4 \ (abc) 3 \ (abc) 3 \\ \hline \\ 4 \ (abc) 3 \ (abc) 3 \\ \hline \\ \end{array}$	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [a.xxx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =\frac{2+3}{7} =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a^{b}_{c}]12°39'18.05"\rightarrow [10]12°39'18.05"\rightarrow [10]123.678 \rightarrow [60]3h30m45s +6h45m36s = [60]3h45m -$	$\begin{array}{c} 4 \ abc 3 = \\ abc \\ 2ndF \ dc \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ \hline \\ \hline \\ 2 \ abc \\ \hline \\ 123 \ convec \ 12 \ DMS \ 39 \ DMS \ 5 = \\ \hline \\ abc \\ \hline \\ 3 \ DMS \ 30 \ DMS \ 45 \ DMS \ = \\ \hline \\ 3 \ DMS \ 36 \ DMS \ = \\ \hline \\ 3 \ DMS \ 45 \ DMS \ - \\ 1.66 \\ \hline \\ 2ndF \ x^{-1} \ bbc \\ \hline \\ $	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xx] \rightarrow [a.xx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =\frac{2+3}{7} =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a^{b}_{c}]12°39'18.05"\rightarrow [10]12°39'18.05"\rightarrow [10]123.678 \rightarrow [60]3h30m45s +6h45m36s = [60]3h45m -1.69h = [60]$	$\begin{array}{c} 4 \ abc 3 = \\ abc \\ 2ndF \ d'c \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ X^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ X^{-1} = \\ \hline \\ 2 \ abc \\ 9 = \\ \hline \\ \hline \\ 2 \ abc \\ \hline \\ 2 \ abc \\ \hline \\ 123 \ cm \\ 30 \ mms \ 30 \ mms \ 45 \ mms \\ \hline \\ 45 \ mms \ 36 \ mms = \\ \hline \\ 3 \ mms \ 45 \ mms \ - 1.6 \\ \hline \\ 2ndF \ x^{-1} \ beg \\ \hline \end{array}$	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =2+37 =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a\frac{b}{c}]](7)12°39'18.05"\rightarrow [10]123.678 → [60]3h30m45s +6h45m36s = [60]3h45m -1.69h = [60]sin62°12'24" = [10](8)(6)(7) (7) (7) (7) (7) (7) (7) (7) (7) (7) $	$\begin{array}{c} 4 \ abc 3 = \\ abc \\ 2ndF \ dc \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ x^{-1} = \\ \hline \\ 2 \ abc \\ \hline \\ \hline \\ 2 \ abc \\ \hline \\ 123 \ convec \ 12 \ DMS \ 39 \ DMS \ 5 = \\ \hline \\ abc \\ \hline \\ 3 \ DMS \ 30 \ DMS \ 45 \ DMS \ = \\ \hline \\ 3 \ DMS \ 36 \ DMS \ = \\ \hline \\ 3 \ DMS \ 45 \ DMS \ - \\ 1.66 \\ \hline \\ 2ndF \ x^{-1} \ bbc \\ \hline \\ $	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =2+37 =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a\frac{b}{c}]](7)12°39'18.05"\rightarrow [10]123.678 → [60]3h30m45s +6h45m36s = [60]3h45m -1.69h = [60]sin62°12'24" = [10](8)(6)(7) (7) (7) (7) (7) (7) (7) (7) (7) (7) $	4 (av _c 3 = (av _c) 2ndF (dc) 2ndF (dc) 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) X ⁻¹ = (1 2 + 3 (av _c 9 = (1	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [d/c] 10^{\frac{2}{3}} = (\frac{2}{3})^{-1} = \sqrt{\frac{4}{9}} = \frac{2+3}{7} = 7 1.25 + \frac{2}{5} = [a.xxx] \rightarrow [a^{b}_{C}] $ (7) 12°39' 18.05" $\rightarrow [10]$ 123.678 $\rightarrow [60]$ 3h30m45s + 6h45m36s = [60] 3h45m - 1.69h = [60] sin62°12'24" = [10]	4 (av _c 3 = (av _c) 2ndF (dc) 2ndF (dc) 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) 4 (av _c 9 = (2 + 3 (av _c 9 = (3 (av _c 9 ($4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [d/c] 10\frac{2}{3} =(\frac{2}{3})-1 =\sqrt{\frac{4}{9}} =2+37 =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a\frac{b}{c}]](7)12°39'18.05"\rightarrow [10]123.678 → [60]3h30m45s +6h45m36s = [60]3h45m -1.69h = [60]sin62°12'24" = [10](8)(6)(7) (7) (7) (7) (7) (7) (7) (7) (7) (7) $	4 (av _c 3 = (av _c) 2ndF (dc) 2ndF (dc) 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) X ⁻¹ = 2 (av _c 3 (2ndF) X ⁻¹ = (1 2 + 3 (av _c 9 = (1	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \rightarrow [a.xxx] \rightarrow [d/c] 102/3 = (2/3)-1 = √{\frac{4}{9}} = 2+3 = 7 = 1.25 + 2/5 = [a.xxx] → [ab/c] 12°39' 18.05" → [10] 123.678 → [60] 3h30m45s + 6h45m36s = [60] 3h45m - 1.69h = [60] sin62°12'24" = [10] [8] (x = 6 y = 4 → (r = y = (r)) (x = 0 + $	$\begin{array}{c} 4 \ abc 3 = \\ abc \\ 2ndF \ d'c \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ X^{-1} = \\ \hline \\ 2 \ abc \\ 3 \ 2ndF \ X^{-1} = \\ \hline \\ 2 \ abc \\ \hline \\ 2 \ abc \\ \hline \\ 2 \ dbc \\ \hline \\ 1.25 \ dc \\ 4 \ dbc \\ \hline \\ 1.25 \ dc \\ 4 \ dbc \\ \hline \\ 1.25 \ dc \\ 4 \ dbc \\ \hline \\ 1.25 \ dc \\ 4 \ dbc \\ \hline \\ 1.25 \ dc \\ 4 \ dc \\ \hline \\ 1.25 \ dc \\ 4 \ dc \\ \hline \\ 1.25 \ dc \\ 4 \ dc \\ \hline \\ 1.25 \ dc \\ 4 \ dc \\ \hline \\ 1.25 \ dc \\ 4 \ dc \\ \hline \\ 1.25 \ dc \\ 4 \ dc \\ \hline \\ 1.25 \ dc \\ \hline \ 1.25 \ dc \\ \ 1.25 \ dc \\ \ 1.25 \ dc \\ \hline \ 1.25 \ dc \\ \ 1.25 \ dc \\ \ 1.25 \ dc \\ $	$\begin{array}{c} 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$ \rightarrow [a.xxx] \rightarrow [d/c] 102/3 = (2/3)-1 = √{\frac{4}{9}} = 2+3 = 7 = 1.25 + 2/5 = [a.xxx] \rightarrow [a^b_c](7]12°39'18.05"\rightarrow [10]123.678 \rightarrow [60]3h30m45s +6h45m36s = [60]3h45m -1.69h = [60]sin62°12'24" = [10](8](x = 6 \ y = 4 \ \phi \in [°]$	$\begin{array}{c} 4 \ (abc) 3 \ = \\ abc \\ 2ndF \ (dc) \\ \hline 3 \ (abc) 3 \ = \\ 2 \ (abc) 3 \ (abc) 3 \ = \\ 2 \ (abc) 3 \ (abc) 3 \ = \\ \hline 2 \ (abc) 3 \ (abc) 3 \ = \\ \hline 2 \ (abc) 3 \ (abc) 3 \ (abc) 3 \ = \\ \hline 2 \ (abc) 3 \ (abc) 3 \ (abc) 3 \ = \\ \hline (abc) 3 \ (abc) 3 \ (abc) 3 \ = \\ \hline (abc) 3 \ (ab$	$\begin{array}{c} 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$ \rightarrow [a.xxx] \rightarrow [d/C] 10\frac{2}{3} =(\frac{2}{3})1 =\sqrt{\frac{4}{9}} =2+3 =1.25 + \frac{2}{5} = [a.xxx]\rightarrow [a\frac{b}{C}][7]12°39' 18.05"\rightarrow [10]12°39' 18.05"\rightarrow [10]123.678 → [60]3h30m45s +6h45m36s = [60]3h45m -1.69h = [60]sin62°12'24" = [10][6][6](a)(a)(b)(c) ($	$\begin{array}{c} 4 \ abc 3 = \\ abc \\ 2ndF \ dc \\ \hline 3 \ 2ndF \ x^{-1} = \\ \hline 2 \ abc 3 \ 2ndF \ x^{-1} = \\ \hline 2 \ abc 3 \ 2ndF \ x^{-1} = \\ \hline 2 \ abc \\ \hline 2 \ abc \\ \hline 3 \ 2ndF \ x^{-1} \\ \hline 2 \ abc \\ \hline 125 \ + \ 2 \ abc \\ \hline 5 \ = \\ \hline abc \\ \hline 125 \ + \ 2 \ abc \\ \hline 5 \ = \\ \hline abc \\ \hline \hline 123.678 \ 2ndF \ x^{-1} \\ \hline 123.678 \ 2ndF \ x^{-1} \\ \hline 5 \ = \\ \hline 3 \ DMS \ 30 \ DMS \ 45 \ DMS \\ \hline 123.678 \ 2ndF \ x^{-1} \\ \hline 5 \ abc \\ \hline 5 \ abc \\ \hline 123.678 \ 2ndF \ x^{-1} \\ \hline 5 \ abc \\ \hline 123.678 \ 2ndF \ x^{-1} \\ \hline 145 \ DMS \ 36 \ DMS \ x^{-1} \\ \hline 3 \ DMS \ 45 \ DMS \ x^{-1} \\ \hline 14 \ 2ndF \ x^{-1} \\ \hline 5 \ abc \\ \hline 2ndF \ x^{-1} \\ \hline 5 \ abc \\ \hline 14 \ 2ndF \ x^{-1} \\ \hline 5 \ abc \\ \hline 14 \ 2ndF \ x^{-1} \\ \hline 5 \ abc \\ \hline 7 \ abc \ abc \\ \hline 7 \ abc \ abc \ abc \\ \hline 7 \ abc \ a$	$\begin{array}{c} 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

9]		
		0
95		0
80	95 DATA	n= 1
80	80 DATA	n= 2
75	(DATA)	n= 3.
75	75 (FRQ(,)) 3 (DATA)	n= 6
75	50 (DATA)	n= 7.
50		
$\overline{x}=$	$(RCL)(\overline{\overline{x}})$	75.71428571
$\sigma x =$	RCL Ox	12.37179148
$\Sigma x =$	\bigcirc RCL $\frown \Sigma x$	530
$\Sigma x^2 =$	$(\text{RCL})(\Sigma x^2)$	41'200
sx =	(RCL) Sx	13.3630621
$sx^2 =$	2ndF) X ² =	178.5714286
10]		
	$\sqrt{\sum x^2 - x^2}$	
$\bar{z} = \frac{\sum x}{n}$	$\int \sigma x = \sqrt{\frac{\sum x^2 - n\overline{x}}{n}}$	
$\sqrt{\Sigma u^2}$	V n	
$x = \sqrt{\frac{\sum x^2 - n}{n-1}}$	$\frac{1\overline{x^2}}{\Sigma x^2 = x_1 + x_2 + \cdots}$ $\Sigma x^2 = x_1^2 + x_2^2 + \cdots$	$x + x_n$
V n-1	$\Delta x^{-} = x_{1}^{-} + x_{2}^{-} +$	$\cdots + x_n^-$
11]		
Function	Dynamic range	e
Fonction	Plage dynamiq	
Funktion	zulässiger Bere	
	DEG: x < 10 ¹⁰	
	$ x < 10$ $(\tan x : x \neq$	90 (2n-1))*
sin x, cos x,	RAD: $ x < \frac{\pi}{100} \times 10^{1}$	0
$\tan x$, $\cos x$, $\tan x$	RAD: $ x < \frac{\pi}{180} \times 10^{1}$ $(\tan x : x \neq$ GRAD: $ x < \frac{10}{9} \times 10^{10}$	π (0p 1))*
lan x	GRAD: $ x < \frac{10}{5} \times 10^{10}$	2 (211-1))
	GRAD. $ x < \frac{9}{9} \times 10^{-6}$, , 100 (0-, 1))*
	(tan x : x ≠	100 (2n–1))*
$\sin^{-1}x$, $\cos^{-1}x$	$ x \leq 1$	
$\tan^{-1}x$, $\sqrt[3]{x}$	x < 10 ¹⁰⁰	
In x, log x	$10^{-99} \le x < 10^{100}$	
iπ <i>x</i> , iog <i>x</i>		
	• $y > 0$: $-10^{100} < x \log y$	< 100
\mathcal{Y}^{x}	• $y = 0$: $0 < x < 10^{100}$ • $y < 0$:	
	y < 0. $r = n (0 < r < 1; \frac{1}{2} = 2n$	$-1 x \neq 0$)*
	$x = n (0 < x < 1: \frac{1}{x} = 2n$ -10 ¹⁰⁰ < x log y < 100	$1, x \neq 0$
	$-10^{100} < x \log y < 100$ • y > 0: $-10^{100} < \frac{1}{x} \log y$	+ 100 (m × 0)
_	• $y > 0$. =10 ¹⁰⁰ < $\frac{1}{x} \log y$	< 100 ($x \neq 0$)
$x\sqrt{y}$	• $y = 0$: $0 < x < 10^{100}$	
	• $y < 0$: $x = 2n-1$	
	$(0 < x < 1 : \frac{1}{x})$	$= n, x \neq 0)^{,}$
	$\begin{array}{c c} (0 < x < 1 : \frac{1}{x} \\ -10^{100} < \frac{1}{x} \log \ _{1} \end{array}$	v < 100
ex	$-10^{100} < x \le 230.2585092$	
10 ^x	$-10^{100} < x < 100$	
sinh x, cosh x,	<i>x</i> ≤ 230.2585092	
tanh x		
sinh ⁻¹ x	x < 10 ⁵⁰	
cosh ⁻¹ x	1 ≤ <i>x</i> < 10 ⁵⁰	
tanh ⁻¹ x	x < 1	
x ²	$ x < 10^{50}$	
x ³	x < 2.15443469×10 ³³	
\sqrt{x}	$0 \le x < 10^{100}$	
x ⁻¹	$ x < 10^{100} (x \neq 0)$	
n!	0 ≤ n ≤ 69*	
_	$0 \le r \le n \le 99999999999*$	
nPr	$\frac{n!}{(n-r)!} < 10^{100}$	
	(11-1)!	
	$0 \leq r \leq n \leq 9999999999*$	
nCr	$0 \leq r \leq 69$	
	$\frac{n!}{(n-r)!}$ < 10 ¹⁰⁰	
↔DEG, D°M'S	$0^{\circ}0'0.00001'' \le x < 10000$	0
$\leftrightarrow DEG, D^{\circ}M'S$ $x, y \to r, \theta$	$\frac{0^{\circ}0'0.00001'' \le x < 10000}{\sqrt{x^2 + y^2} < 10^{100}}$	0

	0 < = 10100
	$0 \le r < 10^{100}$
$r, \theta \rightarrow x, y$	DEG: $ \theta < 10^{10}$
., . ,, ,	RAD: $ \theta < \frac{\pi}{180} \times 10^{10}$
	GRAD : $ \theta < \frac{10}{9} \times 10^{10}$
	DEG→RAD,
DRG 🕨	$GRAD \rightarrow DEG: x < 10^{100}$
Bridi	RAD \rightarrow GRAD: $ x < \frac{\pi}{2} \times 10^{98}$
	$ x < \frac{1}{2} \times 10$
nGCDn, nLCMn	0 < n < 10 ¹⁰ *
* (n_r: integer / or	ntier / ganze Zahlen)
(II, I. IIItegel / el	
For Australia / New Zeala	and only : For warranty information please see <u>www.sharp.net.a</u>
or Australia only:	
A THIS	PRODUCT CONTAINS
	ON BATTERIES.
	BATTERIES OUT OF
	CH OF CHILDREN.
For EU only:	
Manufactured by	
SHARP CORPORATI 1 Takumi-cho, Sakai-	
Osaka 590-8522, Jap	an
In Europe represented Sharp Electronics Eur	ope Ltd.
4 Furzeground Way, S	Stockley Park,
Uxbridge, Middlesex, http://www.sharp.e	
Imported into Europe	
Olomoucká 83, 627	pol. s r.o., 00 Brno, Czech Republic
Visit our Web site	
http://www.morav	ia-europe.eu
NOT USE THE : NOT USE THE : NON OT PUT T 1. In the European Unic Used electrical and elect SEPARATELY in accord promotes recycling of me should participate II.LEL environment due to conte electrical and electronic i delectroid and electronic that I II 'Hg' or 'Pb' appear mercury (Hg) or lead (Pb Take USED EQUIPMEN available. Before that, re facility: usually a place w	ronic equipment and batteries must be collected and treated ance with law. This ensures an environment-fittedly treatment, terials, and minimizes final disposal of waste. Each household SAL DISPOSAL can be harmful to human health and the ained hazardous substances I THIS SYMBOL appears on equipment and batteries (or the packaging) to remind you of the balow it, this means that the battery contains traces of), respectively. To a local, usually municipal, collection facility, where move batteries, Take USED BATTEFIES to a battery collection here new batteries are sold. Ask there for a collection box for t, contact your dealer or local authorities and ask for the correct
If you wish to discard this	product, please contact your local authorities and ask for the
correct method of dispos	al. ENGLISH
SI VOUS VOLL PLESPATTER BRULEZ PAS D L'équipement électrique rassemblés et traités SE SAUVAG Peut étra nuis présence de substances SAUVAG Peut étra nuis présence de substances decritique et électronique le rappelart SI Hg ou IP a pielostaties contient d Déposer l'Écul/PEMENT UTILISEES à l'endroit pu utiliser pour la mise au ra votre revendeur ou les au votre revendeur ou les au si vous souhaitez mettre	et électronique usagé et les plies/batteries doivent être PAREMENT conformément la lo. Cela assure un traitement nement, promeut le recyclage de matériels et réduit au de déchets. Chaque ménage devarita participert le DEPOT sible pour la santé humaine et l'environnement en raison de la dangereuseel CE SYMBOLE et visible sur fécujoenent et sur les plies/batteries (ou sur leurs emballages) afin de vous y apparaissent en dessous, sur leurs emballages) afin de vous y apparaissent en dessous, sur leurs emballages) afin de vous Statteries usagées. Déposer des PLLS/BATTERIES évu pour la collècte de ple/batterie; cela peut être chez votre le collecteur approphé. Dans le doute, entrez en contact avec utorité locales et demandez des informations sur la méthode à ibut.
	FRANCAIS
	FRANÇAIS

SOLLEN, DURFEN SIE NICHT ZUM HAUSMULL GEGEBEN WERDEN I 1. Inder Europäischen Union Gebrauchte elektrische und elektronische Geräte und Batterien müssen laut Gesetz GETRENNT gesammet und entsorgt werden. So werden die umweltreundliche Abfatbehandung und das Recyding von Stoffen sichergestellt und die Rest-Abfatbehandung und das Recyding von Stoffen sichergestellt und die ORDNUNGSWDHGE ENTSORGUNG schadet wegen der schädlichen Stoffe darin der Genzundheit und der Umwelt I DIESES ZEICHEN auf Gerät, Batterie oder Verpackung soß lie daraut hinweisen I Wen darunter noch Hg' oder "Pb sicht, bedeutet dies, dass Spuren von Cuecksliber (Hg) or Biel (Pb) in der Batterie vorhanden sind. Bringen Sie GEBRAUCHTE ELEKTRISCHE UND ELEKTRISCHE Zu einer einteröntlichen, meist kommunalen Sammelstelle, soweit vorhanden. Entnehmen Sie zuvor die Batterien, Bringen Sie VERBRAUCHTE BATTERIEN zu einer Batterie-Sammelstelle; zumeist dort, wo neue Batterien verkauft werden. Fragen Sie dort nach einen Sammelsheller für verbrauchte Batterien. Wenden Sie ich im Zweifel an Ihren Händler oder Ihre örtlichen Behörden, um Auskunft über die richtige Entsorgung zu erhalten. Entsorgung zu erhalten.

2. In anderen Ländern außerhalb der EU

Bitte erkundigen Sie sich bei Ihrer Gemeindeverwaltung nach dem ordnungsgemäßen Verfahren zur Entsorgung dieses Geräts. DEUTSCH

EL510RT(LQ1)-2