

23LSC21E1

M:

display

Notice

(SET UP)

(In)

settings

Operation

(2ndF) CA

Mode selection (MODUS)

(2ndF)(M-CLR)(1)(0)

(2ndF) (M-CLR) 2 0 *3

O: Clear X: Retain

Memory clear key

Angular unit: DEG

Mode Selection

Display notation: NORM1

Recurring decimal: AUS

NORMAL mode: MODUS 0

Used to perform statistical operations

Used to perform distribution calculations.

STAT mode: MODUS 1

TABLE mode: MODUS 2

DISTR mode: MODUS 3

HOME Key

as follows:

*1 Statistical data (entered data)

restore the calculator's default settings.

for the calculator's user settings ((SET UP))

Press (2ndF) (M-CLR) to display the menu

(2ndF)(M-CLR)(0)

2ndF OFF *4

RESET switch*3

ON/C

effective in specific modes.

in this manual as follows:

SHARP

SCIENTIFIC CALCULATOR WriteView MODEL EL-W550TG

OPERATION MANUAL

SHARP CORPORATION

INTRODUCTION

About the calculation examples (including some formulas and tables), refer to the reverse side of this manual. After reading this manual, store it in a convenient location for future reference

Operational Notes

- Do not carry the calculator around in your back pocket, as it may break when you sit down. The display is made of glass and is particularly fragile.
- Keep the calculator away from extreme heat such as on a car dashboard or near a heater, and avoid exposing it to
- excessively humid or dusty environments. Since this product is not waterproof, do not use it or store it where fluids, for example water, can splash onto it. Raindrops, water spray, juice, coffee, steam, perspiration, etc. will also cause malfunction
- Clean with a soft, dry cloth. Do not use solvents or a wet cloth. Avoid using a rough cloth or anything else that may cause scratches.
- Do not drop it or apply excessive force Never dispose of batteries in a fire.
- Keep batteries out of the reach of children
- For the sake of your health, try not to use this product for long periods of time. If you need to use the product for an extended period, be sure to allow your eyes, hands, arms, and body adequate rest periods (about 10-15 minutes every hour) If you experience any pain or fatigue while using this product, discontinue use immediately. If the discomfort continues please consult a doctor.
- This product, including accessories, may change due to upgrading without prior notice.
- NOTICE -SHARP strongly recommends that separate permanent written records be kept of all important data. Data may be lost or altered in virtually any electronic memory product under certain circumstances. Therefore, SHARP , assumes no responsibility for data lost or otherwise rendered unusable whether as a result of improper use, repairs, defects, battery replacement, use after the specified battery life has expired or any other cause
- SHARP will not be liable nor responsible for any incidental or consequential economic or property damage caused by misuse and/or malfunctions of this product and its peripherals, unless such liability is acknowledged by law
- Press the RESET switch (on the back), with the tip of a ball-point pen or similar object, only in the following cases
- Do not use an object with a breakable or sharp tip. Note that pressing the RESET switch erases all data stored in memory. When using for the first time
- After replacing the battery To clear all memory contents
- · When an abnormal condition occurs and all keys are inoperative
- + If service should be required on this calculator, have the calculator serviced in the region (country) where you purchased it.

Hard Case

DISPLAY

- During actual use, not all symbols are displayed at the same time · Only the symbols required for the usage under instruction are shown in the display and calculation examples. Indicates that some contents are hidden in the
- **↑/**↓ directions shown.
- Appears when (2ndF) is pressed, indicating that the 2ndF: functions shown in the same color as 2ndF are enabled.

Modify Function

1 Decimal calculation results are internally obtained in scientific notation, with up to 14 digits in the mantissa. However, since calculation results are displayed in the form designated by the display notation and the number of decimal places indicated, the internal calculation result may differ from that shown in the display. By using the modify function (2ndF) ROUND), the internal value is

Indicates that $\begin{tabular}{c} hyp \end{tabular}$ has been pressed and the hyperbolic HYP functions are enabled. If [2ndF] arc hyp is pressed, the symbols "2ndF HYP" appear, indicating that inverse hyperbolic functions are enabled.

of memory contents can be performed.

as "NORM1", and N2 as "NORM2"

BUSY: Appears during the execution of a calculation.

W-VIEW: Indicates that the WriteView editor is selected.

DEG/RAD/GRAD: Indicates angular units.

independent memory (M)

BEFORE USING THE CALCULATOR

Key Notations Used in this Manual

To specify e^x : 2ndF e^x

To specify E: (ALPHA) (E)

· Functions that are printed in gray adjacent to the keys are

The multiplication operator "X" is differentiated from the letter "X"

In certain calculation examples, where you see the LINE symbol,

the key operations and calculation results are shown as they

In each example, press (ON/C) to clear the display first. Unless

Entry

Ο

Ο

0

Ο

Ο

Ο

Ο

0

Cleared when changing between sub-modes in STAT mode.

*3 The RESET operation will erase all data stored in memory and

*4 Pressing 2ndF) OFF will erase all data stored in memory, except

To initialize the display settings, press O. The parameters set

Used to perform arithmetic operations and function calculations

Used to illustrate the changes in values of functions in table format.

Note: Equations and values currently being entered will disappear

Press HOME to return to NORMAL mode from other modes.

in the same way as when the mode is changed.

otherwise specified, calculation examples are performed in the

WriteView editor (SET UP 2 0 0) with the default display

(Display) M, X, Y

A–F

Х

Х

Х

Х

0

Ο

Ο

Ο

ANS STAT*1

Х

0

X*2

Х

Ο

Ο

0

Ο

Х

Ο

Х

Х

0

Ο

Ο

 \cap

f(x)

g(x)

Х

Ο

Х

Х

Ο

0

0

Ο

To specify In: In

To specify the multiplication operator: $\overline{\times}$

To specify the letter "X": (ALPHA) (x)

Clearing the Entry and Memories

would appear in the Line editor.

Turning On and Off

Press 2ndF OFF to turn it off.

FIX/SCI/ENG/N1/N2: Indicates the notation used to display a value

Indicates that a numerical value is stored in the

Press ONC to turn the calculator on. The data, that was on-screen

The turning off operations (2ndF) OFF)* will erase all data

* When the calculator will turn itself off by automatic power

stored in memory, except for the calculator's user settings

off function, it will retain all data stored in memory.

when the power was automatically turned off, will appear on th

Appears when (STO) or (RCL) is pressed, and entry (recall)

and changes by SET UP menu. N1 is displayed on-screen

SET UP Menu Press (SET UP) to display the SET UP menu.

- Press ON/C to exit the SET UP menu. You can press (-) to return to the previously displayed ALPHA: Appears when (ALPHA) is pressed, indicating that the parent menu inctions shown in the same color as ALPI A) are enabled
 - Determination of the angular unit (degrees, radians, and grades) DEG (°): SETUP 0 0 (default) RAD (rad): SETUP 0 1
 - GRAD (q): (SET UP) 0 2

Selecting the display notation and decimal places

- 0 Two settings of Floating point (NORM1 and NORM2), Fixed decimal point (FIX), Scientific notation (SCI), and Engineering notation (ENG) When SETUP 1 0 (FIX) or SETUP 1 2 (ENG) is
- pressed, the number of decimal places can be set to any value between 0 and 9.
- When (SET UP) 1 (SCI) is pressed, the number of significant digits can be set to any value between 0 and 9. Entering 0 will set a 10-digit display.

Setting the floating point number system in scientific notation

- NORM1 (the default) and NORM2. A number is automatically displayed in scientific notation outside a preset range:
 NORM1 (SETUP)
 1
 3): 0,00000001 ≤ | x | ≤ 9.999.999

 NORM2 (SETUP)
 1
 4): 0,01 ≤ | x | ≤ 9.999.999
- Selecting the editor and setting the answer display 2
- This calculator has the following two editors in NORMAL mode: WriteView and Line.
- Set the display format for numerical calculation results in WriteView editor.

The WriteView editor

 $\begin{array}{c|c} \text{EXAKT}(a/b,\sqrt{,\pi}) & \hline \\ \text{SETUP} & 2 & 0 & 0 \\ \text{DEZIMAL} & & \hline \\ \text{SETUP} & 2 & 0 & 1 \\ \hline \\ \text{The Line editor} & & \hline \\ \text{SETUP} & 2 & 1 \\ \hline \end{array}$ The Line editor

- When "EXAKT(a/b, $\sqrt{\pi}$, π)" is set, results will appear in fraction format or irrational number format (including π and $\sqrt{}$) when display is possible.
- When "DEZIMAL" is set, results will be decimal display except for fractional calculation, and will be not shown in irrational number format (including π and $\sqrt{}$).
- Press (HANGE) to change the calculation results to another format that can be displayed

Insert and overwrite entry methods

When using the Line editor, you can change the entry method from "EINFUEGEN" (the default) to "UEBERSCHREIBEN". After you switch to the overwrite method (by pressing SET UP) 3 1 the triangular cursor will change to a rectangular one, and the number or function underneath it will be overwritten as you make entries.

Setting the recurring decimal

- In NORMAL mode, calculation results can be shown in a recurring decimal format. Recurring decimal is AUS: <u>SET UP</u> <u>4</u> <u>0</u> (default)
- Recurring decimal is AN: In the WriteView editor, the recurring part is indicated by "-". In
- the Line editor, the recurring part is indicated in parentheses.
- If over 10 digits, including the recurring part, the result cannot be displayed in recurring decimal format

Adjusting the display contrast

Press $(\mbox{set UP}\ \mbox{5}\),$ then $(\mbox{+}\)$ or $(\mbox{-}\)$ to adjust the contrast. Press ON/C) to exit

ENTERING, DISPLAYING, AND EDITING THE EQUATION

The WriteView Editor

Entry and display

In the WriteView editor, you can enter and display fractions or certain functions as you would write them The WriteView editor can be used in NORMAL mode

Displaying calculation results (when EXAKT is selected)

- When possible, calculation results will be displayed using fractions, $\sqrt{2}$, and π . When you press (MMME), the display will cycle through the following display styles:
- Improper fractions (with or without π) \rightarrow decimal numbers Proper fractions (with or without π) \rightarrow decimal numbers
- Irrational numbers (square roots, fractions made using square

roots) \rightarrow decimal numbers

- Notes: • In the following cases, calculation results may be displayed using $\sqrt{3}$ · Arithmetic operations and memory calculation
- Trigonometric calculations
- In trigonometric calculations, when Entry value entering values such as those in DEG multiples of 15 the table to the right, results may be
- RAD multiples of $\frac{1}{12}\pi$ shown using $\sqrt{}$ Improper/proper fractions will be multiples of $\frac{50}{3}$ GRAD converted to and displayed as
- decimal numbers if the number of digits used in their expression is greater than nine.
- If the number of digits in the denominator of a fractional result that uses π is greater than three, the result is converted to and displayed as a decimal number

The Line Editor

Entry and display

calculations.

- In the Line editor, you can enter and display equations line by line. Notes:
- Up to three lines of text may be viewed on the screen at one time In the Line editor, calculation results are displayed in decimal form or line fraction notation if possible.
- Use (CHARGE) to switch the display format to fractional form or decimal form (if possible)

The calculator has distribution features to find statistical

Note: Calculation results are stored in ANS memory.

Editing the Equation

Just after obtaining an answer, pressing <a> brings you to the end of the equation and pressing brings you to the beginning. Press , b, c, a, or to move the cursor. Press 2ndF or 2ndF b to jump the cursor to the beginning or the end of the equation

Random dice

Random coin

modes.

variable key.

answer memory.

Memory List

instructions

Notes:

number.)

settings.

modes.

No.

01

02

03 04

13 14

19 20 21

22 23 24

9

0

8

Chain Calculations

Fraction Calculations

is greater than nine.

Physical Constants

To simulate a die-rolling, a random integer between 1 and 6 can

0

Ð

Ð

B

To simulate a coin flip, 0 (heads) or 1 (tails) can be randomly

Memory calculations can be performed in NORMAL and STAT

Note: For functional memories f(x) and g(x), see "USING THE

Press [STO] and a variable key to store a value in memory.

Press RCL and a variable key to recall the value from that

be added to or subtracted from an existing memory value.

Press ON/C STO M to clear the independent memory (M).

The calculation result obtained by pressing = or any other

Notes: Use of \fbox{RCL} or \fbox{ALPHA} will recall the value stored in

memory using up to 14 digits.

The values are shown in a 9-character range

Applicable memories: A, B, C, D, E, F, X, Y, M

calculation ending instruction is automatically stored in the last

Press (ALPHA) (MEMORY) to display a list of the values saved in memory.

The previous calculation result can be used in the subsequent

calculation. However, it cannot be recalled after entering multiple

Arithmetic operations and memory calculations can be performed

Improper/proper fractions will be converted to and displayed as

To recall a constant, press (2ndF) [KONST], then select a physical constant from the list. (Each item is labeled with a 2-digit

To scroll up or down the list of constants, press () or

▼ (▶). Use 2ndF ▲ (◀) or 2ndF ▼ (▶) to jump to the

First or last page. Enter the first digit of the 2-digit item number to jump to the

page containing the number that begins with that digit. When you enter the second digit, the constant is displayed

Physical constants can be recalled in NORMAL and STAT

Note: Physical constants and metric conversions are based

of Standards and Technology).

Constant

Newtonian constant of gravitation

Standard acceleration of gravity

Speed of light in vacuum

05 Proton mass 06 Neutron mass 07 Muon mass 08 Atomic mass unit-kilogram

Boltzmann constant Vacuum mag. permeability

Vacuum electric permittivity

Classical electron radius

Rydberg constant Magnetic flux quantum

Bohr magneton Electron magnetic moment

Proton magnetic moment Neutron magnetic moment Muon magnetic moment

15 Fine-structure constant

Nuclear magneton

25 Compton wavelength 26 Proton Compton waveleng

SPECIFICATIONS

Internal calculations:

Pending operations:

(varies according to

Operating temperature:

External dimensions:

Power source:

Operating time:

Weight:

Accessories

Display of calculation results:

Display

2

Bohr radius

Electron mass

relationship

09 Elementary charge

Planck constant

automatically according to the display and decimal placement

on the 2018 CODATA recommended values, or on the

2008 Edition of the "Guide for the Use of the International

System of Units (SI)" released by NIST (National Institute

No.

32 33 34

35 36 37

38 39 40

42

43

48

49

Parsec

Constant

Electron charge to mass quotien

Quantum of circulation

Proton gyromagnetic ratio Josephson constant Electron volt Celsius Temperature Astronomical unit

Molar mass of carbon-12

Reduced Planck constant

nverse fine-structure constant

roton-electron mass ratio

Neutron Compton wavelength

First radiation constant Second radiation constant

50 Second radiation constant
51 Characteristic impedance of vacuum
52 Standard atmosphere

96 × 32 dot matrix liquid crystal display

Mantissa: 10 digits

Exponent: 2 digits

Built-in solar cells

use and other factors) the alkaline battery only

Mantissas of up to 14 digits

0°C-40°C (32°F-104°F)

and hard case

SHARP SHARP CORPORATION

64 calculations 10 numeric values

1,5 V (DC): Backup battery

Approx. 113 g (including battery)

(Alkaline battery (LR44 or equivalent) \times 1)

Approx, 3.000 hours when continuously

displaying 55555 at 25°C (77°F), using

80 mm (W) \times 166 mm (D) \times 15 mm (H)

Battery \times 1 (installed), operation manual,

Hartree energy Conductance quantum

Molar mass constant

27 Stefan-Boltzmann constant

28 Avogadro constant
 29 Molar volume of ideal gas (273,15 K, 101,325 kPa)

30 Molar gas constant 31 Faraday constant 32 Von Klitzing constant

decimal numbers if the number of digits used in their expression

number and a fraction can be performed by pressing

using fractions. In NORMAL mode, conversion between a decimal

memory. To place a variable in an equation, press (ALPHA) and a

In addition to all the features of temporary memories, a value can

be generated by pressing 2ndF ZUFALL 2 ENTER.

generated by pressing (2ndF) (ZUFALL) (3) (ENTER).

FUNCTIONAL MEMORY'

Temporary memories (A-F. X and Y)

Memory Calculations

Independent memory (M)

Last answer memory (ANS)

Back space and delete key

To delete a number or function, move the cursor to the right of it, then press - You can also delete a number or function that the cursor is directly over by pressing (2ndF) (ENTF)

Note: In a multi-level menu, you can press - to back to the previous menu level 6

Multi-line Playback Function

This calculator is equipped with a function to recall previous equations and answers in NORMAL mode. Pressing A will display the previous equation. The number of characters that can be saved is limited. When the memory is full, stored equations will be deleted to make room, starting with the oldest

- To edit an equation after recalling it, press
 or
 .
 The multi-line memory will be cleared by the following operations: (2ndF) CA), mode change, RESET, editor change ((SET UP) 2) \bigcirc \bigcirc \bigcirc , (SET UP) 2 \bigcirc 1 or (SET UP) 2 1), and memory clear ((2ndF) (M-CLR 1 \bigcirc). Storing a function to f(x) or g(x) are not saved in the multi-line
- memory.

Priority Levels in Calculation

This calculator performs operations according to the following priority: ① Fractions (1 r 4, etc.) ② Functions preceded by their argument $(x^{-1}, x^2, n!, \text{etc.}) \otimes y^x, \sqrt[x]{4}$ Implied multiplication of a memory value (2Y, etc.) \otimes Functions followed by their argument (sin, cos, etc.) (6) Implied multiplication of a function (2sin 30, A¹/₄, etc.) (7) nCr $(\otimes \times, \div, \text{ int} \div (\otimes +, - (\otimes -, M+, M-, \Rightarrow M, \text{ and other calculation}))$ ending instructions

 If parentheses are used, parenthesized calculations have precedence over any other calculations

SCIENTIFIC CALCULATIONS

entered in the following way:

Performing Σ calculations

WriteView editor:

Performing Π calculations

WriteView editor

Line editor

Random Function

Bandom numbers

Random integer

Calculation Ranges

Calculation ranges

20

nd value [[function[, increment]]

Line editor:

 $\Sigma(function[, increment])$

initial value to an end value in NORMAL mode

logn (base, value)

• abs value

 Σ Function

Press (

3. Press =

□ Function

Press =

- Press MODE 0 to select NORMAL mode.
- Arithmetic Operations
- 6 The closing parenthesis () just before (=) or (M+) may be omitted

Functions

3

Refer to the calculation examples for each function. In the Line editor, the following symbols are used: • to indicate an expression's power. (y^x , 2ndF e^x , 2ndF 10^x) T: to separate numerators and denominators. (a/b)

When using $\log_a x$ or (2ndF) |x| in the Line editor, values are

The Σ function returns the cumulative sum of a given expression

Specify the following parameters: initial value, end value

 Σ (function, initial value, end value[, increment])

The Π function returns the product of a given expression from an

Press (2ndF) ____. Specify the following parameters: initial value, end value,

 Π (function, initial value, end value, increment)

numbers in succession, press ENTER). Press ON/C) to exit

The random function has four settings. To generate further random

A pseudo-random number, with three significant digits from 0 up to

R.Int(*minimur value*, *maximum value*) For example, if you enter (2ndF) [ZUFALL 1 1 ((i)) 99) (ENTER), a

Within the ranges specified, this calculator is accurate to ± 1

of the 10th digit of the mantissa. However, a calculation error

increases in continuous calculations due to accumulation of

etc., where continuous calculations are performed internally.)

Additionally, a calculation error will accumulate and become large

in the vicinity of inflection points and singular points of functions.

If the absolute value of an entry or a final or intermediate result of a calculation is less than 10^{-99} , the value is considered to be 0

Display of results using $\sqrt{}$ (when EXACT is selected)

Calculation results may be displayed using $\sqrt{\ }$ when all of the

• When each coefficient falls into the following ranges:

When the number of terms in the intermediate and final

Note: The result of two fractional terms that include $\sqrt{}$ will be

Improper handling of batteries can cause electrolyte leakage or

When installing, orient the battery properly as indicated in the calculator

When the battery is replaced, the memory contents are erased. Erasure can also occur if the calculator is defective

or when it is repaired. Make a note of all important memory

If the display has poor contrast or nothing appears on the display

• Fluid from a leaking battery accidentally entering an eye could

result in serious injury. Should this occur, wash with clean water

Should fluid from a leaking battery come in contact with your skin

If the product is not to be used for some time, to avoid damage to the

unit from a leaking battery, remove it and store in a safe place.

· An exhausted battery left in the calculator may leak and damage

4. Remove the used battery by prying it out with a ball-point pen or

7. Press the RESET switch (on the back) with the tip of a ball-point

8. Adjust the display contrast. See "Adjusting the display contrast".

does not appear as shown, remove the battery, reinstall it, and

NORMALER MÖDUS

This calculator will turn itself off to save battery power if no key is

Fig. 2

0,

Make sure that the display appears as shown below. If the display

Install one new battery. Make sure the "+" side is facing up.

Do not leave an exhausted battery inside the product.

Explosion risk may be caused by incorrect handling

· Do not throw batteries into a fire as they may explode

when ON/C is pressed in dim lighting, even after adjusting the

explosion. Be sure to observe the following handling rules

The battery is factory-installed before shipment, and may

Notes on erasure of memory contents

contents in case accidental erasure occurs.

display contrast, it is time to replace the battery.

or clothes, immediately wash with clean water.

Keep batteries out of the reach of children.

1. Turn the power off by pressing 2ndF) OFF).

When to Replace the Battery

and immediately consult a doctor

Replacement Procedure

2. Remove two screws. (Fig. 1)

3. Lift the battery cover to remove

6. Replace the cover and screws.

check the display once again

Fig. 1

Automatic Power Off Function

pressed for approximately 10 minutes

pen or similar object.

And then press ON/C

other similar pointed device. (Fig. 2)

be exhausted before it reaches the service life stated in the

 $1 \le a < 100; 1 < b < 1.000; 0 \le c < 100;$

reduced to a common denominato

Make sure the new battery is the correct type.

 $1 \le d \le 1.000 \cdot 1 \le e \le 100 \cdot 1 \le f \le 100$

calculation results is one or two.

BATTERY REPLACEMENT

Notes on Battery Replacement

· When intermediate and final calculation results are displayed in

each calculation error. (This is the same for v^x , x^y , n!, e^x, ln.

0.999, can be generated by pressing 2ndF) ZUFALL 0 ENTER

You can specify a range for the random integer with "R.Int("

random integer from 1 to 99 will be genera

 $\pm 10^{-99}$ to $\pm 9,999999999 \times 10^{99}$ and 0.

in calculations and in the display

following conditions are met:

the following form:

 $\pm \frac{a\sqrt{b}}{2} \pm \frac{c\sqrt{d}}{4}$

specifications

Cautions

the calculator

е

Note: In the WriteView editor, the result will be a fraction or 0

specified, the default value of n = 1 will be used

Note: Parameters are entered in the following way

function with variable x, and increment (n). You do not need to specify the increment. If the increment is not

You do not need to specify the increment. If the increment is not

from an initial value to an end value in NORMAL mode

function with variable x, and increment (n).

Note: Parameters are entered in the following way

specified, the default value of n = 1 will be used.

converted to match that of the display, so that the displayed value can be used without change in subsequent operations. · When using the WriteView editor, if the calculation result is displayed using fractions or irrational numbers, press (make) to

Various functions

convert it to decimal form first.

· Refer to the calculation examples for each function

int÷

int

- "Q" indicates "Quotient", and "R" indicates "Remainder" Pressing 2ndF) int -) cannot be followed by pressing a key for another operation such as $(+, -, \times, \div)$, otherwise an error will result.
- The quotient and remainder are shown in "NORM1" format. If not all digits can be displayed in "NORM1" format, normal division is performed.

Returns the highest integer value that does not exceed the value specified.

BinKo (Binomialkoeffizient)

Find the number of combinations that choose "r" out of "n" (regardless of order).

STATISTICAL CALCULATIONS

Statistical calculations can be performed in STAT mode. There are two sub-modes within STAT mode. Press MODUS 1, then press the number key that corresponds to your choice:

- Single-variable statistics
- 1 : Two-variable statistics

The statistical data input screen appears

After entering statistical data from the input screen, press (DATA) or ON/C and close the input table. You can then check statistical values from the STAT menu (ALPHA) (STAT) and specify statistical variables.

Data Entry and Correction

Data entry

Two-variable data table Single-variable data table

- After entering the data, press ENTER. The input is finalized and the cursor moves to the next line. If data was not entered in an x or y, 0 is entered, 1 is entered in FRQ (frequency), and the cursor moves to the next line.
- You can use (\vec{x}, \vec{y}) to enter X and FRQ (or X, Y, and FRQ) at once. In the input table, up to 6 digits are displayed for each value, including the sign and decimal point. Any values that exceed 6 digits in length are displayed in exponent notation.
- Up to 100 data items can be entered. With single-variable data, a data item with an assigned frequency of one is counted as one data item, while an item with an assigned frequency of 2 or higher is stored as a set of two data items. With two-variable data, a set of data items with an assigned frequency of one is counted as two data items. while a set of items with an assigned
- frequency of 2 or higher is stored as a set of three data items. - To execute statistical calculation, press $\ensuremath{\text{DATA}}$ or $\ensuremath{\text{ON/C}}$ and close the input table

Data correction

Use (,), (), or v to move the cursor and select the desired data. Press 2ndF () or 2ndF v to jump the cursor to the beginning or end of the data

Data correction

Move the cursor to the data that you want to correct, enter the numeric value, and press (ENTER)

Data insertion

To insert a line in front of the cursor position, press 2ndF) [INS-D]. The initial values entered in the inserted data are 0 in x and y, and 1 in FRQ.

Data deletion

- To delete the entire line where cursor is positioned, press 2ndF) ENTF Notes: In STAT mode, all statistical data will be erased if the submode
- is changed or (2ndF) CA is pressed.
- In STAT mode, press DATA to display the input table.

Two-variable Statistics of ① and ②.

Single-variable statistical calculation

calculation (refer to the table below):

Statistical Calculations and Variables

The following statistics can be obtained for each statistical

	1	n	Number of samples				
		Σx	Sum of samples (x data)				
		$\sum x^2$	Sum of squares of samples (x data)				
	0	Σy	Sum of samples (y data)				
		Σy^2	Sum of squares of samples (y data)				
		Σxy	Sum of products of samples (x, y)				

STAT Menu

Statistics of 1.

Ð

60

After closing the input table, you can view statistical values and specify statistical variables from STAT menu (ALPHA) (STAT)) (ALPHA) (STAT) 0: Display statistical values (ALPHA) (STAT) 1: Specify statistical value variables

USING THE FUNCTIONAL MEMORY

You can store a function using X variable in functional memories (f(x) and g(x)). The stored function can be used in NORMAL mode or TABLE mode And also, in NORMAL mode, press f() or g() to enter an arbitrary X value to calculate

- In a function, only "X" can be used as a variable, and other
- variables are all regarded as numbers (stored into the variables). Σ and Π cannot be used in functions for f(x) and g(x).
- If editor changed (SET UP 2 ~), the stored functions will be deleted.
- f(x) and g(x) cannot be used in STAT mode or DISTR mode.

TABLE MODE

You can see the changes in values of one or two functions (f(x) and g(x)) using TABLE mode.

Setting a table

- 1. Press MODUS 2 to enter TABLE mode.
- 2. Enter a function (f(x)), and press ENTER.
- If there is a function already stored in the functional memory f(x), that function is displayed. And the entered or modified
- function is overwritten in the functional memory f(x)3. If needed, enter the 2nd function (g(x)) and press ENTER. If there is a function already stored in the functional memory g(x), that function is displayed. And the entered or modified function is overwritten in the functional memory g(x).
- 4. Enter a starting value (X_Start:), and press ENTER. The default starting value is 0.
- 5. Enter a step value (X_Schritt:). The default step value is 1. You can use \frown and \bigtriangledown to move the cursor between the starting value and step value.
- 6. Press ENTER when you finish entering a step value. A table with a variable X and the corresponding values (f(x)) appears, displaying 3 lines below the starting value.
 - f you entered two functions, the f(x) and g(x) columns appear You can use A and T to change the X value and see its corresponding values in table format.
- The table is for display only and you cannot edit the table. • The values are displayed up to 7 digits, including signs and a decimal point.
- Press \blacksquare or \blacktriangleright to move the cursor to f(x) column (f(x) and g(x) columns if you entered two functions) or X column Full digits of the value on the cursor are displayed on the bottom
- riaht. • After step 4 above, you can press ALPHA f() or ALPHA g(x) = to return to the function (f(x) or g(x)) and make corrections.

- It is also possible to recall q(x) within an f(x) function and f(x)within a g(x) function
- In a function, only "X" can be used as a variable, and other variables are all regarded as numbers (stored into the variables). Irrational numbers such as $\sqrt{2}$ and π can also be entered into a
- starting value or a step value. You cannot enter 0 or a negative number as a step value. You can use WriteView editor when inputting a function.
- It may take time to make a table, or "-----" may be displayed depending on the function entered or conditions specified for the variable X
- Please note that when making a table, the values for variable X are rewritten
- Press 2ndF CA or mode selection to return to the initial screen of the mode, and return to the default values for the starting value and step value

Normal Distribution

DISTRIBUTION FUNCTIONS

Normal cdf Calculates the probability of a specified intervals x1-x2 for the normal distribution with the specified mean (μ) and standard deviation (σ)

Press MODUS 3, and then select the desired distribution function.

Binomial Distribution

Binomial pdf

Calculates a probability density at x for the discrete binomial distribution with the specified trial number (n) and probability of success (p) on each trial.

Binomial cdf

Calculates a cumulative probability at x for the discrete binomial distribution with the specified trial number (n) and probability of success (p) on each trial

Binomial cdf2

Calculates the probability of a specified intervals x1-x2 for the discrete binomial distribution with the specified trial number (n) and probability of success (p) on each trial.

Poisson Distribution

Poisson pdf

Calculates a probability at x for the Poisson distribution with the specified mean (µ)

Poisson cdf

Calculates a cumulative probability at x for the Poisson distribution with the specified mean (μ).

ERRORS AND CALCULATION RANGES

Errors Ø

An error will occur if an operation exceeds the calculation ranges, or if a mathematically illegal operation is attempted. When an error occurs, pressing back to the place in the equation where the error occurred. Edit the equation or press ON/C to clear the equation.

Note: For errors related to f(x) or g(x), when "in f(x)" or "in g(x)" is where the error occurred.

Error codes and error types

FEHLER 01: Syntax

- An attempt was made to perform an invalid operation Ex. 2 + - 5 =
- FEHLER 02: Mathematik Fehler
- The absolute value of an intermediate or final calculation result equals or exceeds 10100
- An attempt was made to divide by zero (or an intermediate calculation resulted in zero).
- The calculation ranges were exceeded while performing calculations. 0 or a negative number was entered as a step value in TABLE
- equals or exceeds 10¹⁰⁰ in TABLE mode.
- When the number to be factored into primes is greater than 2 and other than a 10-digit positive integer, or when the result of prime factorization is a negative number, decimal, fraction, $\sqrt{}$, or π .

FEHLER 03: Schachtelung

The available number of buffers was exceeded. (There are 10 buffers for numeric values and 64 buffers for calculation instructions) When each of f(x)/g(x) refers to itself in NORMAL mode.

FEHLER 04: Daten Ende

Data items exceeded 100 in STAT mode

FEHLER 10: Nicht definiert

(ENTF) in the WriteView editor.

 $\overline{\mathsf{Ex}} = 5 \quad [x^2] \quad [x^2]$

It can't store a function to f(X)/g(x).

Undefined f(x)/g(x) used in the expression. (in NORMAL mode)

The selected item cannot be deleted by pressing - or 2ndF

In this example, delete the exponent before attempting to delete

Ex. When the expression contains a function that is prohibited in

TABLE mode, such as Σ or Π , an attempt was made to store it

The equation (including any calculation ending instructions)

exceeded its maximum input buffer (159 characters in the WriteView editor or 161 characters in the Line editor). An

equation may not exceed its maximum input buffer

Alert Messages

Kann Nicht löschen!

the parentheses.

Kann Nicht speichern!

in TABLE mode. Puffer voll!

	ENGLISH	+-x÷	5			8 ³ =	8 [2ndF] (X ³)	=	512,	12 a/b				TAT) INS-D		
	ENGLIGH		_	(2ndF) CA	0,	$\sqrt{49} - \sqrt[4]{81} =$	√ 49 ►			$\frac{1}{2} + \frac{4}{3} = \frac{1}{6}$	ON/C a/b 1 ▼ 2 ► + a/b 4 ▼ 3 =	<u>11</u> 6				
			(1) 3(5 + 2) =	3 (5 + 2) =	21,	LINE	4 (2ndF) [⊥] √	81 (<u>=</u>) 74	4,		CHANGE	1,8333333333	20	1	X FF	RQ
CALCULA	TION EXAMPLES		$(2) 3 \times 5 + 2 =$	3 × 5 + 2 =	17,		2ndF) (*) 8 '	Ĩ =	4,	LINE	1 (a/b) 2 (+) 4 (a/b) 3 (=)	11г6	40			
11/11/11	1/iou		$(3 + 3) \times 2 =$ $\rightarrow (1)$		21,	³ √27 =	(2ndF) (3) 2	7 =	3,		CHAÑGE	1 833333333	40			
vvrite	eview	EL-W550TG	→ ②		17,	4! =	4 (2ndF) [n!]		24,		<u></u>		40 20	ENTER 30 ENTER	.) 40 (x;y) 2 ENTE	
			\rightarrow (1)		21,	5-9 =	(2ndF) (x) 5	<u> </u>	4,				50	↑	X FI	RQ
			\rightarrow ③	(2ndF)	16,	LINE	(2ndF) $ x $	5 - 9	4,	$V_0 = 15,3 \text{ m/s}$	(ON/C) 15,3 × 10	+	\downarrow	3 4 0 4 5 0) 2) 1	
										t = 10 s		F		5		
			6 [+][-		() [Exp]	θ =	$=\sin^{-1}x, \ \theta=\tan^{-1}x$	$\theta = \cos^{-1}x$		$V_0t + \frac{1}{2}gt^2 = 1$?m KONST 03 × 10 x	<u>د</u> 4/3 3325		dF (1) (2ndF) (E		2ndF) (INS-D)
SET UP (A	NZGE)		45 + 285 ÷ 3 =		140,	DEG	$-90 \le \theta \le 90$ $\pi \le 0 \le \pi$	$0 \le \theta \le 180$				045,5525	40		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
100000 ÷ 3 =			$\frac{18+6}{15-8} =$	(18 + 6 ((15 - 8 =	$\frac{)}{24}$	GRAD	$\frac{-100}{2} \le 0 \le \frac{-100}{2}$	0 ≤ θ ≤ π 0 < θ < 200		14 ROUND			40 45	3 45	X FI	RQ
[NORM1]	(ON/C) 100000 (3 = CHANGE	_÷_] 33'333,333	3 42 × -5 + 120	= 42 × () 5	+ 120					→ [FIX, NACH	KOMMASTELLEN = 1]		45	4 60) 1	
→ [FIX:		2 33'333.3	$(5 \times 10^3) \div (4 \times 10^3)$	$(10^{-3}) = 5 \text{ Exp} 3 \div 4$	-90,	8 Σ						аа	45 60	▶		I
NACHKOMMAST	TELLEN 2]			Exp () 3 =	1'250'000,	$\frac{5}{\sum}(x+2)$) 5 🕨				5				
→ [SCI:	SET UP 1 1) 2 3,3 e 6		(\tan) (\sin^{-1}) (\cos^{-1}) (\tan^{-1})	π (hyp) (arc hyp)	x=1	(ALPHA) (x) + 2		25	5 ÷ 9 = ANS	5 ÷ 9 =	9		TAT) DATA ST	AT	
\rightarrow	.EN 2]			$\frac{\log (\log_a x)}{\log (\log_a x)} e^x e^x e^x$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	n = 1			25.		CHANGE	0,6		MODUS 1		
[ENG: ANZ.DEZ.STELL	SET UP 1 2 LEN 2]) 2 33,33 e 6	$3 \qquad y^x \qquad $) /3	<i>n</i> = 2				$ANS \times 9 =$	× 9 = *1	5,0	80	ENTER 50 EN	TER	
) 77'777 777	sin 60 [°] =		2	9					5 ÷ 9 =	5	75	1	X	FRQ
	SET UP 1 3			CHANGE	0,866025403	$\prod_{x=1}^{5} (x+2)$	$\begin{array}{c c} ON/C & 2ndF & \Pi & 1 \\ \hline AI PHA & \chi & + & 2 \\ \end{array}$	5 🕨			CHANGE	0,6	75	4	50 1	
			$\cos\frac{\pi}{4}$ [rad] =	$\begin{array}{c} (\text{SET UP} & 0 & 1 \\ (\text{cos} & \pi & a/b & 4 \end{array}$	$\frac{\sqrt{2}}{2}$	n = 1			2'520.	→ [ROUND]	2ndF (ROUND)	3	50	•		
→ [DEZIMAL]	(ON/C) (SET UP) (2) (0)[1]	0,	CHANGE	0,707106781	<i>n</i> = 2		2 =	105.	$ANS \times 9 =$	× 9 = *2	<u>27</u>		DATA	Stat [1	1-Var] 0,
1 ÷ 2 =	1 (÷) 2 (=)	0	tan ⁻¹ 1 [g] =	$\begin{array}{c c} (\text{SET UP} & 0 & 2 \\ (2\text{ndF}) & (\tan^{-1}) & 1 & = \end{array}$	50.						CHÂÑGE	5 4		(ALPHA) (STAT)	<i>n</i> =	7,
→ [EXAKT(a/b.√	.π)] (SET UP) 2 0 0)	0.	SET UP 0 0	20,		.) [STO] [M+] [M-	ANS				5.4		0	$\begin{array}{l} \Sigma x &=\\ \Sigma x^2 &=\end{array}$	530, 41'200,
1 ÷ 2 =	1 ÷ 2 =	-	(cosh 1,5 + sinh	$1,5)^{2} = ON/C (hyp) cos 1,5 + hyp) sin 1,5) X^{2} = $	20.08553692	$8 \times 2 \Rightarrow M$		2 (STO M	16,	$*1\frac{5}{9} \times 9 = 5,8$	55555555555555555555555555555555555555			MODUS 1	1 2 (xiy) 5 (xi ENTER) 21 (xiv) /)) 2 ENTER
3 SET UP (PI	ERIOD)		$\tanh^{-1} \frac{5}{7} =$	2ndF arc hyp tan ()	24 ÷ (<u>8 × 2</u>) =	24 ÷ ALF	PHA) M =	3	$^{*2}\frac{3}{5} \times 9 = 0,6$	6 × 9		$\begin{array}{c c} x & y \\ \hline 2 & 5 \end{array}$	ENTER 15) 25 ENTER	
\rightarrow [AN]	ON/C (SET UP) 4 1		0, In 20 =	In 20 =	2,995732274	(<u>8 × 2</u>) × 5 =	ALPHA) M (× 5 =	80,	0			2 5	 ↑	X Y	FRQ
$611 \div 495 =$	611 ÷ 495 =	<u>61</u> 49	$\frac{1}{5}$ log 50 =	log 50 =	1,698970004	$0 \Rightarrow M$	ON/C STO (Μ	0,	₿ (int÷) (ir	ВіпКо		21 40	3 21 4 15	40 25	3 1
	CHANGE	1,23	4 log ₂ 16384 =	log _a X 2 ▶ 16384	= 14,	$150 \times 3 \Rightarrow M_1$	150 × 3	5 M+	450,	23 ÷ 5 =	ON/C 23 (2ndF) (int÷ 5	Q: 4, R: 3.	21 40	> 		
	CHANGE	1,23434343	4 LINE	logaX 2 (;;) 16384) = 14.	+) \$250: M ₁ + 250	$0 \Rightarrow M_2$ 250 M+		250,	95÷4=	9,5 (2ndF) (int÷) 4	Q: 2,	15 25		Stat [;	2-Var]
	CHANGE	<u>61</u> 49	$\frac{1}{5}$ $e^3 =$	$(2ndF) e^x 3 =$	20,08553692	—) M ₂ × 0,05	RCL M (× 0,05	75		= (R: 1,5			-	0,
LINE	611 ÷ 495 =	1,2(3	(4) 1 ÷ e =		0.7/7070///				665,	-32 ÷ (-5) =	() 5 =	Q: 6, R: -2,		ALPHA STAT	$n = \sum_{x} $	7, 94,
	CHANGE	1,23434343	4 10 ^{1,7} =	(2ndF) (10 ^x) 1.7 (=)	50,11872336	$\frac{24}{24} = \frac{12}{4}$	24 ÷	4 + 6	12	$\textbf{-34,5} \rightarrow [\text{int}]$	2ndF) (int) (-) 34,5	-35,		<u> </u>	$\begin{array}{c} \Sigma x^2 = \\ \downarrow \Sigma y = \end{array}$	1'700, 179,
	CHANGE	611-49	$5 \frac{1}{1+1} =$	6 (2ndF) (x-1) (+) 7	13	4+6 5(*)	, <u>3</u> × ALPH/	A) [ANS] [+] 60	5 161		5 (2ndF) (BinKo) 2 =	10			$\uparrow_{\Sigma v^2} =$	6'051
	CHANGE	1,2(3	6 7 (+)	2ndF X ⁻¹ =	42	$3 \times (A) + 60 \div (A)$		ANS =	5	502					$\Sigma xy =$	3'203,
\rightarrow [AUS]	ON/C (SET UP) 4 0		0,	CHANGE	0,309523809	•								ON/C) (ALPHA) (SI		
			$8^{-2} - 3^4 \times 5^2 =$	$8 \xrightarrow{y^x} (-) 2 \rightarrow $	129599	6 + 4 = ANS	ON/C) 6 + 4	=	10,				$\Sigma x =$			94,
			_	\times 5 x^2 =	- 64	ANS + 5 =	+ 5 =		15,							
$\frac{2}{5} + \frac{3}{4} =$	+ a/b 3 ►	4	3		-2'024,984375	$8 \times 2 = ANS$	8 × 2 =		16,							
	(CHANGE)	، ۱.۲	5	$8 y^{x} (-) 2 (-)$ $3 y^{x} 4 \times 5$		ANS ² =	X ² =		256,							
	(CHANGE)	, 2	3		-2'024,984375											
$\sqrt{3} \times \sqrt{5} =$			<u> </u>	(wighte)	-167377704											
			د ا 													
	CHANGE	3,8729833	+ 6 													
sin 45 =	sin 45 =		2													
	CHANGE	0,70710678	31													

<i>1</i> ₿ () ()) $f(x) = g(x) =$
$\frac{\sqrt{x}}{2} \Rightarrow f(x)$	$\begin{array}{c} (\text{ON/C}) \ \sqrt{} \ \text{(ALPHA)} \ X \ \textbf{)} \\ (a/b) \ 2 \ \text{(STO)} \ \textbf{f}(\textbf{X}) = \end{array}$
$12 \rightarrow V$	12 (PTO) (Y)

X_Start: 5 5 ENTER X_Schritt: 1 1 ENTER

(DISTR) Calculate the probability of MODUS 3 0 Normal cdf range x = 54 to 66 in the 54 ENTER 66 x1: above sample. ENTER 60 ENTER 6 X2:

 $\Rightarrow f(X)$

	2						
54,	Function	Dynamic range					
66, 60,		DEG: $ x < 10^{10}$ $(\tan x : x \neq 90(2n - 1))^*$					

on that requires proper treatment, recovery and re-cycling of used electrical and electronic equipment. Following the implementation by member sta-tes, private households within the EU states may return their used electrical and electronic equipment to designated collection facilities free of charge*. In some countries* your local retai-ler may also take back your old product free of charge if you purchase a similar new one. *) Please contact your local authority for further details. If your used electrical or electronic equipment has batteries or accumulators, please dispose of these separately beforehand according to local requirements. By disposing of this product correctly you will help ensure that the waste undergoes the necesary treatment, recovery and recycling and thus prevent potential negative effects on the envi-ronment and human health which could otherwise arise due to inappropriate waste handling. 2. In other Countries outside the EU If you wish to discard this product, please contact your local authorities and ask for the correct method of disposal.

ENGLISH

X

1 Takumi-cho, Sakai-ku, Sakai City,

Imported into Europe by: MORAVIA Consulting spol. s r.o. Olomoucká 83, 627 00 Brno, Czech Republic

Belmont House, Station Way, Crawley, West Sussex RH10 1JA, Great Britain