model EL－520TS

OPERATION MANUAL

INTRODUCTION

Thank you for purchasing the SHARP Scientific Calculator Model EL－520TS． Atter reading this manual，store it in a convenient location for future reference Note：
On the sheet with calculation examples is used english notation（with a decimal point）． This product uses a period as a decimal point．

Operational Notes

－Do not carry the calculator around in your back pocket，as it may break when you sit down．The display is made of glass and is particularly fragile．
－Keep the calculator away from extreme heat such as on a car dashboard or near a heater，and avoid exposing it to excessively humid or dusty environments． Since this product is not waterproof，do not use it or store it where fluids，for example water，can splash onto it．Raindrops，water spray，juice，coffee，steam，perspiration， etc．will laso cause malfunction．
－Clean with a soft，dry cloth．Do not use solvents or a wet cloth．
－Do not drop it or apply excessive force
－Never dispose of batteries in a fire．
Keep batteries out of the reach of children．
－For the sake of your health，try not to use this product for long periods of time．If you need to use the product for an extended period，be sure to allow your eyes，hands， arms，and body adequate rest periods（about 10－15 minutes every hour）． If you experience any pain or fatigue while using this product，discontinue use immediately．If the discomfort continues，please consult a doctor．
－This product，including accessories，may change due to upgrading without prior notice． NOTICE
SHARP strongly recommends that separate permanent witten records be kept of all important data．Data may be lost or altered in virtually any electronic memory product under certain circumstances．Therefore，SHARP assumes no responsibi－ lity for data lost or otherwise rendered unusable whether as a result of improper use，repairs，defects，battery replacement，use after the specified battery life has expired，or any other cause．
－SHARP will not be liable nor responsible for any incidental or consequential eco－ nomic or property damage caused by misuse andlor malfunctions of this product and its peripherals，unless such liability is acknowledged by law．
Press the RESET switch（on the back），with the tip of a ball－point pen or similar object，only in the following cases：
－When using for the first time
After replacing the battery
To clear all memory contents
－When an abnormal condition occurs and all keys are inoperative．
Do not use an object with a breakable or sharp tip．Note that pressing the RESET switch erases all data stored in memory．
fservice should be required on this calculator，use only a SHARP senvicing dealer， SHARP approved service facility，or SHARP repair sevice where available．
Hard Case

DISPLAY
Equation \rightarrow
Display

Mantissa Exponent
During actual use，not all symbols are displayed at the same time．
－Certain inactive symbols may appear visible when viewed from a far off angle． Only the symbols required for the usage currently being explained are shown in the display and calculation examples in this manual．
$\leftrightarrow \rightarrow$ ：Appears when the entire equation cannot be displayed． Press $\square \square$ to see the remaining（hiden）section．
$x y / r \boldsymbol{\theta}$ ：Indicates the mode of expression of results in the complex calcu－ lation mode．
－／：Indicates that data can be visible abovelbelow the screen．
2ndF ：\quad Appears when（2ndF）is pressed，indicating that the functions shown Appears when（2naf）is pressed，indicating that the functions shown in same color are enabled．
HYP：Indicates that hyp has been pressed and the hyperbolic functions are enabled．If endef erchive are pressed，the symbols＂2ndF HYP＂ appear，indicating that inverse hyperbolic functions are enabled．

FIX／SCI／ENG ：Indicates the notation used to display a value．
DEG／RAD／GRAD ：Indicates angular units and changes each time（DRG is pressed．

STATT ：Appears when statistics mode is selected．	
$\mathrm{M}:$	Indicates that a value is stored in the in

Indicates that a value is stored in the independent memory． Indicates that the calculator is waiting for a numerical value to be entered，such as during simulation calculation． Appears when the calculator shows an angle as the result in the complex calculation mode． Indicates an imaginary number is being displayed in the complex calculation mode．

BEFORE USING THE CALCULATOR

Key Notation Used in this Manual

e^{x}	To specity e^{x}	（2ndF e^{x}
In	To specity In	m
	To specity F	

Functions that are printed in orange above the key require 2ndF to be pressed first before the key．When you specify the memory，press（ALPFA／first．Numbers for input value are not shown as keys，but as ordinary numbers．

Power On and Off

Press ONDC to turn the calculator on，and（2ndF OFF to turn it off．

Clearing the Entry and Memories				
Operation	$\begin{gathered} \text { Entry } \\ \text { (Display) } \end{gathered}$	$\begin{gathered} M, \\ F 1-F 4 \end{gathered}$	$\begin{gathered} A-F, X, Y \\ \text { ANS } \end{gathered}$	$\begin{gathered} \text { STAT¹ }^{1} \\ \text { STAT-VAR }{ }^{2} \\ \hline \end{gathered}$
ONTC	\bigcirc	\times	\times	\times
CndF CA	\bigcirc	＊	\bigcirc	\bigcirc
Mode selection（MODE）	\bigcirc	\times	\bigcirc	\bigcirc
2ndF M C．CR 000^{3}	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2ndF $1 .-\mathrm{ClR} 100{ }^{3}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
RESET switch	\bigcirc	\bigcirc	\bigcirc	\bigcirc

O：Clear $\quad x$ ：Retain

＊1 Statistical data（entered data）
${ }^{*} 2 \bar{x}, s x, \sigma x, n, \Sigma x, \Sigma x^{2}, \bar{y}, s y, \sigma y, \Sigma y, \Sigma y^{2}, \Sigma x y, r, a, b, c$
＊ 3 All variables are cleared．See＇About the Memory clear key＇for details．
4 This key combination functions the same as the RESET switch．
See＇About the Memory clear key＇for details．

Memory clear key

Press 2 2ndF M．CLR to display the menu．
－To clear all variables（ $M, A-F, X, Y$, ANS
F1－F4，STAT VAR），press $0 \square 0$ or 0 ENT．
MEM RESET
－To RESET the calculator press 110 or 1 ENT．The RESET operation wil erase all data stored in memory，and restore the calculator＇s default setting．

Entering and Correcting the Equation

Cursor keys
－Press \square or to move the cursor．You can also return to the equation after getting an answer by pressing $\rightarrow(\mathbb{)}$ ．See the next section for using the Δ and ∇ keys．
－See＇SET UP menu＇for cursor use in the SET UP menu．
Insert mode and Overwrite mode in the Equation display
－Pressing $(2$ dif INS switches between the two editing modes：insert mode（default） and overwrite mode．A triangular cursor indicates that an entry will be inserted at the cursor，while the rectangular cursor indicates to overwrite preexisting data as you make entries．
－To insert a number in the insert mode，move the cursor to the place immediately after where you wish to insert，then make a desired entry．In the overwrite mode，data under the cursor will be overwritten by the number you enter
－The mode set will be retained until the next RESET operation

Deletion key

－To delete a numberffunction，move the cursor to the numberfunction you wish to delete，then press DEL．If the cursor is located at the right end of an equation， the DEL key will function as a back space key
Multi－line Playback Function
Previous equations may be recalled in the normal mode．Equations also include calculation ending instructions such as＂$=$＂and a maximum of 142 characters can be stored in memory．When the memory is full，stored equations are deleted in the order of the oldest first．Pressing $\boldsymbol{\Delta}$ will display the previous equation．Further pressing © will display preceding equations（after returning to the previous equation，press \square to view equations in order）．In addition，（2ndF Δ can be used to jump to the oldest equation．
－The multi－line memory is cleared by the following operations：（2ndF CA，
2ndF OFF（including the Automatic Power Off feature），mode change，memory
 chain calculation，angle unit conversion，coordinate conversion， N －base conversion， numerical value storage to the temporary memories and independent memory，

and input／deletion of statistical data．

Priority Levels in Calculation

Operations are performed according to the following priority
（1）Fractions（1r4，etc．）（2）\angle ，engineering prefixes（3）Functions preceded by their argument（ $x^{-1}, x^{2}, n!$ ，etc．）（4）$y^{r}, x \sqrt{\text {（5）I }}$ Implied multiplication of a memory value （2Y，etc．）（6）Functions followed by their argument（sin，cos，etc．）（7）Implied multipli cation of a function（ 2 sin30，etc．）（8） $\mathrm{nCr}, \mathrm{nPr}$（9）$\times, \div$（10）,+ －（11）AND（12）OR，XOR， XNOR ${ }^{(13)}=, \mathrm{M}+, \mathrm{M}-, \Rightarrow \mathrm{M}, \triangle \mathrm{DEG}, \mathrm{RAD}, \$ GRAD，DATA，CD $\rightarrow r \theta, \rightarrow x y$ and other calculation ending instructions
－If parentheses are used，parenthesized calculations have precedence over any other calculations．

INITIAL SET UP

Mode Selection

（MODE 0 ：Normal mode（NORMAL）

MODE 1 ：Statistic mode（STAT）
MOOE 2 ：Equation mode（EQN）
MOOE 3 ：Complex number mode（CPLX）

HOME Key

Press HOME to return to NORMAL mode from other modes
Note：Equations and values currently being entered will disappear，in the same way as when the mode is changed

SET UP menu

Press（setup to display the SET UP menu． DRG FSE TAB
－A menu item can be selected by： 01 －moving the flashing cursor by using $\downarrow \square$ ），then pressing ENT（ \Rightarrow key），or －pressing the number key corresponding to the menu item number．
－If $\boldsymbol{\Delta}$ or is displayed on the screen，press $\boldsymbol{\Delta}$ or to view the previous next menu screen．
－Press ONCC to exit the SET UP menu．
Determination of the Angular Unit（degrees，radians，and grads）
DEG $\left({ }^{\circ}\right): \quad$ SEtup 00 （default）
RAD（rad）：
GRAD（g）：

1 SETVP	0

Selecting the Display Notation and Decimal Places
Four display notation systems are used to display calculation results：Floating point； Fixed decimal point；Scientific notation；and Engineering notation．
－When the FIX，SCI，or ENG symbol is displayed，the number of decimal places（TAB） can be set to any value between 0 and 9 ．Displayed values will be reduced to the corresponding number of digits．

Setting the Floating Point Numbers System in Scientific Notation
Two settings are used to display a floating point number：NORM1（default setting） and NORM2．A number is automatically displayed in scientific notation outside a preset range：
NORM1： $0.000000001 \leq x \leq 9999999999$
NORM2： $0.01 \leq x \leq 9999999999$

CIENTIFIC CALCULATIONS

Press MODE 0 to select the normal mode

In each example，press（ONCD）to clear the display．If the FIX，SCI，or ENG indicator is
displayed，clear the indicator by selecting＇NORM1＇from the SET UP menu．

Arithmetic Operations

－The closing parenthesis \square just before \square or $\triangle M_{+}$may be omitted． Constant Calculations
In constant calculations，the addend becomes a constant．Subtraction and division are performed in the same manner．For multiplication，the multiplicand becomes a constant．
In the constants calculations，constants will be displayed as K ．

Functions

－Refer to the calculation examples of each function．
Before starting calculations，specify the angular unit．
Differential／Integral Functions
Differential and integral calculations are only available in the normal mode．For calculation conditions such as the x value in differential calculation or the initial point in integral calculation，only numerical values can be entered and equations such as 2^{2} cannot be specified．It is possible to reuse the same equation over and over again and to recalculate by only changing the conditions without re－entering the equation．

－Performing a calculation will clear the value in the X memory．

－When performing a differential calculation，enter the formula first and then enter the x value in differential calculation and the minute interval（ $d x$ ）．If a numerical value is not specified for minute interval，$x \neq 0$ will be $|x| \times 10^{-5}$ and $x=0$ will be 10^{-5} from the value of the numeric derivative．
When performing an integral calculation，enter the formula first and then enter a range of integral (a, b) and subintervals (n) ．If a numerical value is not specified fo subintervals，calculation will be performed using $n=100$ ．
Since differential and integral calculations are performed based on the following equations，correct results may not be obtained，in certain rare cases，when performing special calculations that contain discontinuous points．
Integral calculation（Simpson＇s rule）：
$\mathrm{S}=\frac{1}{3} h\left\{f(a)+4\{f(a+h)+f(a+3 h)+\cdots+f(a+(\mathrm{N}-1) h)\}\left|\begin{array}{l}h=\frac{b-a}{\mathrm{~N}} \\ +2\{f(a+2 h)+f(a+4 h)+\cdots+f(a+(\mathrm{N}-2) h)\}+f(b)\} \\ \mathrm{N}=2 n \\ a \leq x \leq b\end{array}\right|\right.$
Differential calculation：$f^{\prime}(x)=\frac{f\left(x+\frac{d x}{2}\right)-f\left(x-\frac{d x}{2}\right)}{d x}$
When performing integral calculations
Integral calculations，depending on the integrands and subintervals included，require longer calculation time．During calculation，＂Calculating！＂will be displayed．To cancel calculation，press（owd．
Note that there will be greater integral errors when there are large fluctuations in the integral values during minute shifting of the integral range and for periodic functions，etc．，where positive and negative integral values exist depending on the interval． For the former case，divide integral intervals as small

as possible．For the latter case，separate the positive and negative values．Following these tips will allow results of calculations with greater accuracy and will also shorten the calculation time．

Random Function

The Random function has four settings for use in the normal or statistics mode．（This function cannot be selected while using the N －Base function．）To generate further random numbers in succession，press ENT．Press（ONCO to exit．
The generated pseudo－random number series is stored in memory Y ．Each random number is based on a number series．

Random Number

A pseudo－random number，with three significant digits from 0 up to 0.999 ，can be generated by pressing 2ndF）ewoon 0 （ENT）．
Random Dice
To simulate a die－rolling，a random integer between 1 and 6 can be generated by pressing ZndF Emom 1 ENT．
Random Coin
To simulate a coin flip， 0 （head）or 1 （tail）can be randomly generated by pressing 2ndF 2 ENOMT．
Random Integer
An integer between 0 and 99 can be generated randomly by pressing 2ndF 3 ENT．To generate the next random integer number，press ENT．
Angular Unit Conversions
Each time 2 RdF $\mathbb{O R G}$ are pressed，the angular unit changes in sequence．
Memory Calculations［8］

Mode	ANS	M，F1－F4	A－F， \mathbf{X}, \mathbf{Y}
NORMAL	\bigcirc	\bigcirc	\bigcirc
STAT	\bigcirc	\times	\times
EQN	\times	\times	\times
CPLX	\bigcirc	\bigcirc	\times

O：Available $\quad x$ ：Unavailable
Temporary memories（ $\mathrm{A}-\mathrm{F}, \mathrm{X}$ and Y ）
Press STO and a variable key to store a value in memory．
Press RCL and a variable key to recall a value from the memory
To place a variable in an equation，press（AlP＋HA）and a variable key．
Independent memory（ M ）
addition to all the features of temporary memories，a value can be added to or
subtracted from an existing memory value．
Press ©NTC STO M to clear the independent memory（M）
Last answer memory（ANS）
The calculation result obtained by pressing \Rightarrow or any other calculation ending instruction is automatically stored in the last answer memory．
ormula memories（F1－F4）
Formulas up to 256 characters in total can be stored in F1－F4．（Functions such as sin，etc．，will be counted as one letter．）Storing a new equation in each memory will automatically replace the existing equation．

Note：
Calculation results from the functions indicated below are automatically stored in memories X or Y replacing existing values．
－Random function ．．．．．．．．．．Y memory
$\cdot \rightarrow r \theta, \rightarrow x y: ~ X ~ m e m o r y ~(~ o r ~ r ~ x), ~ Y ~ m e m o r y ~(~(~ o r ~ r y) ~$
Use of（RCL）or（ALPHA will recall the value stored in memory using up to 14 digits．

hain Calculations

The previous calculation result can be used in the subsequent calculation．However it cannot be recalled after entering multiple instructions．
－In the case of utilizing postfix functions（ $\sqrt{ }$ ，sin，etc．），you can perform a chain calculation even when the previous calculation result is cleared by the use of the owo key．
Fraction Calculations
Arithmetic operations and memory calculations can be performed using fractions，and conversion between a decimal number and a fraction
－If the number of digits to be displayed is greater than 10 ，the number is converted to and displayed as a decimal number
Binary，Pental，Octal，Decimal，and Hexadecimal Operations（N－Base）【11】
Conversions can be performed between N －base numbers．The four basic arithmetic operations，calculations with parentheses and memory calculations can also be per－ formed，along with the logical operations AND，OR，NOT，NEG，XOR and XNOR on binary，pental，octal and hexadecimal numbers．
Conversion to each system is performed by the following keys：
2ndF \quad Converts to the binary system．＂b＂appears．
2ndF Cen：Converts to the pental syslem．＂β＂appears
2ndF O Col7：Converts to the octal syslem．＂ 0 ＂appears．
2ndF H HEX：Converts to the hexadecimal syslem．＂ψ＂appears．
2ndF COEC：Converts to the decimal syslem．＂b＂，＂q＂，＂ 0 ＂and＂μ＂disappea from the display．
Conversion is performed on the displayed value when these keys are pressed Note：The hexadecimal numbers $A-F$ are entered by pressing π, x^{x}, x^{2}
x^{3}, \log and In and displayed as follows：
$\mathrm{A} \rightarrow i, \mathrm{~B} \rightarrow b, \mathrm{C} \rightarrow i, \mathrm{D} \rightarrow d^{d}, \mathrm{E} \rightarrow \varepsilon, \mathrm{F} \rightarrow i$
In the binary，pental，octal，and hexadecimal systems，fractional parts cannot be ente－ red．When a decimal number having a fractional part is converted into a binary，pental， octal，or hexadecimal number，the fractional part will be truncated．Likewise，when he result of a binary，pental，octal，or hexadecimal calculation includes a fractional part，the fractional part will be truncated．In the binary，pental，octal，and hexadecimal systems，negative numbers are displayed as a complement．
Time，Decimal and Sexagesimal Calculations
Conversion between decimal and sexagesimal numbers can be performed，and，while using sexagesimal numbers，conversion to seconds and minutes notation．The four basic arithmetic operations and memory calculations can be performed using the sexagesimal system
Notation for sexagesimal is as follows：

Coordinate Conversions
Before performing a calculation，select the angular unit．

Rectangular coord．Polar coord．
Value of r or x ：X memory Value of θ or y ：Y memory

Calculations Using Physical Constants

A constant is recalled by pressing 2ndF ©NST followed by the number of the physical constant designated by a 2－digit number．The recalled constant appears in the display mode selected with the designated number of decimal places．
Physical constants can be recalled in the normal mode（when not set to binary，pental， octal，or hexadecimal），statistics mode and equation mode．
Note：Physical constants and metric conversions are based either on the 2014 CODATA recommended values or 2008 Edition of the＂Guide for the Use of the International System of Units（SI）＂released by NIST（National Institute of Standards and Technology）or on ISO specifications．

No．	Constant	No．	Constant
01	Speed of light in vacuum	28	Avogadro constant
02	Newtonian constant of gravitation	29	Molar volume of ideal gas
03	Standard acceleration of gravity		（273．15 K，101．325 kPa）
04	Electron mass	30	Molar gas constant
05	Proton mass	31	Faraday constant
06	Neutron mass	32	Von Klitzing constant
07	Muon mass	33	Electron charge to mass quotient
08	Atomic mass unit－kilogram relationship	34	Quantum of circulation Proton gyromagnetic ratio
09	Elementary charge	36	Josephson constant
10	Planck constant	37	Electron volt
11	Bolizmann constant	38	Celsius Temperature
12	Magnetic constant	39	Astronomical unit
13	Electric constant	40	Parsec
14	Classical electron radius	41	Molar mass of carbon－12
15	Fine－structure constant	42	Planck constant over 2 pi
16	Bohr radius	43	Hartree energy
17	Rydberg constant	44	Conductance quantum
18	Magnetic flux quantum	45	Inverse fine－structure constant
19	Bohr magneton	46	Proton－electron mass ratio
20	Electron magnetic moment	47	Molar mass constant
21	Nuclear magneton	48	Neutron Compton wavelength
22	Proton magnetic moment	49	First radiation constant
23	Neutron magnetic moment	50	Second radiation constant
24	Muon magnetic moment	51	Characteristic impedance of vacuum
25	Compton wavelength	52	Standard atmosphere
26	Proton Compton wavelength		
27	Stefan－Boltzmann constant		

Metric Conversions

Unit conversions can be performed in the normal mode（when not set to binary，pental， octal，or hexadecimal），statistics mode and equation mode．

No．		Remarks	No．		Remarks
01	incm	：inch ：centimeter	23	fl oz（US）：fid	fluid ounce（US）
02			24	mL	milliliter
03	ft	foot meter	25	fl oz（UK）：fid	fluid ounce（UK）
04	m		26	mL	milliliter
05	ydm	：yard meter	27	$J \quad$ ：	Joule
06			28	cal	calorie
07	$\begin{aligned} & \text { mile } \\ & \mathrm{km} \\ & \hline \end{aligned}$	mile kilometer	29	：	Joule
08			30	cal15	Calorie（ $15 n^{\circ} \mathrm{C}$ ）
09	n mile m	：nautical mile ：meter	31	：	Joule
10			32	calit ： 1	I．T．calorie
11	acrem^{2}	：acre square meter	33	hp	horsepower
12			34	W	watt
13	02	：ounce gram	35	ps	French horsepower
14			36	W	watt
15	lb	：pound ：kilogram	37	（kgf／cm²）	
16			38	Pa	Pascal
17	${ }^{\circ}{ }^{\circ} \mathrm{C}$	：Degree Fahrenheit ：Degree Celsius	39	atm ：	atmosphere
18			40	Pa	Pascal
19	$\begin{array}{\|l} \hline \text { gal (US) } \\ \text { L } \\ \hline \end{array}$	：gallon（US） ：liter	41	$(1 \mathrm{mmHg}=1$	1 Torr）
20			42	Pa	Pascal
21	$\begin{aligned} & \hline \text { gal (UK) } \\ & \text { L } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { : gallon (UK) } \\ & : \text { liter } \\ & \hline \end{aligned}$	43	（kgf．m）	
22			44	$\mathrm{N} \cdot \mathrm{m}$	Newtonmeter

Calculations Using Engineering Prefixes【16】 Calculation can be executed in the normal mode（excluding Nbase）using the following 9 types of prefixes．

Prefix	Operation	Unit	Prefix	Operation	Unit
k（kilo）	（MATH 100	10^{3}	μ（micro）	（MATH 1	10^{-6}
M（Mega）	MAATH 1	10^{6}	n（nano）	MATH 1	10^{-9}
G（Giga）	（MATH 1	10^{9}	p（pico）	MATH 1	10^{-12}
T（Tera）	（MATH 1	10^{12}	f（femto）	MATH 1	10^{-15}
m （mili）	MATH $1 \bigcirc 4$	10^{-3}			

Modify Function
【17】
Calculation results are internally obtained in scientific notation with up to 14 digits for the mantissa．However，since calculation results are displayed in the form designated by the display notation and the number of decimal places indicated，the internal calcu－ lation result may differ from that shown in the display．By using the modify function，the internal value is converted to match that of the display，so that the displayed value can be used without change in subsequent operations．

Rešení rovnic

The x value can be found that reduces an entered equation to＂ 0 ＂，
－This function uses Newton＇s method to obtain an approximation．Depending on the function（e．g．periodic）or start value，an error may occur（Error 2）due to there being no convergence to the solution for the equation．
－The value obtained by this function may include a margin of error．If it is larger than
acceptable，recalculate the solution after changing＇Start＇and $d x$ values．
Change the＇Start＇value（e．g．to a negative value）or $d x$ value（e．g．to a smaller value）if：
－no solution can be found（Error 2）．
－more than two solutions appear to be possible（e．g．a cubic equation）
－to improve the arithmetic precision．
－The calculation result is automatically stored in the X memory
Performing Solver function
1．Press $1 \mathrm{MODE} \triangle 0$ ．
2．Input a formula with an x variable．
3．Press（MATH） 0 ．
4．Input＇Start＇value and press ENT）．The default value is＂ 0 ＂．
5．Input $d x$ value（minute interval）．
6．Press ENT．

SIMULATION CALCULATION（ALGB）

If you have to find a value consecutively using the same formula，such as plotting a curve line for $2 x^{2}+1$ ，or finding the variable for $2 x+2 y=14$ ，once you enter the equation，all you have to do is to specify the value for the variable in the formula． Usable variables：$A-F, M, X$ and Y
Unusable functions：Random function
－Simulation calculations can only be executed in the normal mode．
－Calculation ending instructions other than \Rightarrow cannot be used．
Performing Calculations
1．Press MODE 0 ．
2．Input a formula with at least one variable．
3．Press 2 Zdi（AlGB．
4．Variable input screen will appear．Input the value of the flashing variable，then press EENT to confirm．The calculation result will be displayed after entering the value for all used variables．
－Only numerical values are allowed as variables．Input of formulas is not permitted． Upon completing the calculation，press（2ndF）ALGB to perform calculations using the same formula．
－Variables and numerical values stored in the memories will be displayed in the variable input screen．To change a numerical value，input the new value and press ENT］．
－Performing simulation calculation will cause memory locations to be overwritten with new values．

STATISTICAL CALCULATIONS

Press（MOOE \square to select the statistics mode．The seven statistical calculations listed below can be performed．After selecting the statistics mode，select the desired sub－mode by pressing the number key corresponding to your choice． To change statistical sub－mode，reselect statistics mode（press（1000e \square ），then select the required sub－mode
\square（SD）：Single－variable statistics
0 （SD）\quad ：Single－variable statistics
2 （QUAD）：Quadratic regression calculation
3 （EXP）：Exponential regression calculation
4 （LOG）：Logarithmic regression calculation
5 （PWR）：Power regression calculation
6 （INV）：Inverse regression calculation
The following statistics can be obtained for each statistical calculation
Single－variable statistical calculation
Statistics of（1）and value of the normal probability function
Linear regression calculation
Statistics of（1）and（2）and，in addition，estimate of y for a given x（estimate y＇）and estimate of x for a given y（estimate x ）

Exponential regression，Logarithmic regression，Power regression，
and Inverse regression calculation
Statistics of（1）and（2）．In addition，estimate of y for a given x and estimate of x for
given y ．（Since the calculator converts each formula into a inear regression formula before actual calculation takes place，it obtains all statistics，except coefficients a and b ，from converted data rather than entered data．）
Quadratic regression calculation
Statistics of（1）and（2）and coefficients a, b, c in the quadratic regression formula $\left(y=a+b x+c x^{2}\right)$ ．（For quadratic regression calculations，no correlation coefficient (r) can be obtained．）When there are two x^{\prime} values，press \bumpeq 2ndF \leftrightarrows ．
When performing calculations using a, b and c ，only one numeric value can be held．

（1）	\bar{x}	Mean of samples（ x data）
	$s x$	Sample standard deviation（x data）
	σx	Population standard deviation（ x data）
	n	Number of samples
	Σx	Sum of samples（ x data）
	Σx^{2}	Sum of squares of samples（ x data）
（2）	\bar{y}	Means of samples（ y data）
	sy	Sample standard deviation（y data）
	on	Population standard deviation（ y data）
	Σy	Sum of samples（y data）
	Σy^{2}	Sum of squares of samples（ y data）
	इxy	Sum of products of samples（ x, y ）
	r	Correlation coefficient
	a	Coefficient of regression equation
	b	Coefficient of regression equation
	c	Coefficient of quadratic regression equation

－Use ALIPHA and RCL to perform a STAT variable calculation．
Data Entry and Correction
［21］
Entered data are kept in memory until 2 2ndF CA or mode selection．Before entering new data，clear the memory contents．

Data Entry

Single－variable data
Data（DATA）
Data（kx）frequency（DATA）（To enter multiples of the same data）
Two－variable data
Data $x(x, x)$ Data y（DATA
Data $x(x x)$ Data $y(x x)]$ frequency（DATA）（To enter multiples of the same data x and y ．）
Up to 100 data items can be entered．With the single－variable data，a data item without frequency assignment is counted as one data item，while an item assigned with frequency is stored as a set of two data items．With the two－variable data，a set of data items without frequency assignment is counted as two data items，while a set of items assigned with frequency is stored as a set of three data items．

Data Correction

Correction prior to pressing（DATA）immediately after a data entry：
Delete incorrect data with owic，then enter the correct data．
Correction after pressing（DATA：
Use $\triangle \square$ to display the data previously entered．
Press \checkmark to display data items in ascending（oldest first）order．
To reverse the display order to descending（latest first），press the Δ key．
Each item is displayed with＇$X n=$＇，＇$Y n=$＇or＇$N n=$＇＇n is the sequential number of the data set）．
Display the data item to modify，input the correct value，then press（DATA）．Using
（xxy），you can correct the values of the data set all at once．
To delete a data set，display an item of the data set to delete，then press $\overline{2 n d F} C D$
The data set will be deleted．
To add a new data set，press（oNDC and input the values，then press（DATA）．
Statistical Calculation Formulas 【22】

Type	\quad Regression formula
Linear	$y=a+b x$
Exponential	$y=a \cdot e^{b x}$
Logarithmic	$y=a+b \cdot \ln x$
Power	$y=a+x^{b}$
Inverse	$y=a+b \frac{1}{x}$
Quadratic	$y=a+b x+c x^{2}$

In the statistical calculation formulas，an error will occur when
The absolute value of the intermediate result or calculation result is equal to
or greater than 1×10^{100} ．
The denominator is zero．
An attempt is made to take the square root of a negative number．
－No solution exists in the quadratic regression calculation．

Normal Probability Calculations

$\mathrm{P}(t), \mathrm{Q}(t)$ and $\mathrm{R}(t)$ will always take positive values，even when $t<0$ ，because these
functions follow the same principle used when solving for an area
Values for $\mathrm{P}(t), \mathrm{Q}(t)$ and $\mathrm{R}(t)$ are given to six decimal places．

SIMULTANEOUS LINEAR EQUATIONS

simultaneous linear equation with two unknowns（2－VLE）or with three unknowns
（3－VLE）may be solved using this function．
1）2－VLE：MODE 20
（2）3－VLE：MODE 2
If the determinant $D=0$ ，an error occurs．
If the absolute value of an intermediate result or calculation result is 1×10^{100} or more，an error occurs．
Coefficients（a1，etc．）can be entered using ordinary arithmetic operations．
To clear the entered coefficients，press 2ndF CA．
Pressing［ENT when the determinant D is in the display recalls the coefficients． Each time ©ENT is pressed，a coefficient is displayed in the order of input，allowing the entered coefficients to be verified（by pressing（2ndF）ENT），coefficients are displayed in reverse order．）To correct a particular coefficient being displayed enter the correct value and then press ENT．

QUADRATIC AND CUBIC EQUATION SOLVERS

Quadratic $\left(a x^{2}+b x+c=0\right)$ or cubic $\left(a x^{3}+b x^{2}+c x+d=0\right)$ equation may be solved using this function：
（1）Quadratic equation solver：MODE 2
2）Cubic equation solver：（100D 2
Press ENT after entering each coefficient．
The result will be displayed by pressing（ENT）after entering all coefficients．When there are more than 2 results，the next solution will be displayed．
When the result is an imaginary number，＂xy＂symbol will appear．The display can be switched between imaginary and real parts by pressing 2 2ndF $\longrightarrow \rightarrow$ ．
The results obtained by this function may include a margin of error．

COMPLEX NUMBER CALCULATIONS
To carry out addition, subtraction, multiplication, and division using complex numbers,
press MODE 3 to select the complex number mode.
Results of complex number calculations are expressed in two modes:
(1) 2ndF) $\rightarrow x y$: Rectangular coordinate mode ($x y$ appears)
(2) 2ndF $\rightarrow r \theta:$ Polar coordinate mode ($r \theta$ appears)

Complex number entry

(1) Rectangular coordinates
x-coordinate $+y$-coordinate i
or x-coordinate $+i) y$-coordinate
(2) Polar coordinates
$r \measuredangle \theta$
r : absolute value θ : argument

- On selecting another mode, the imaginary part of any complex number stored in
the independent memory (M) will be cleared.
- A complex number expressed in rectangular coordinates with the y-value equal to zero, or expressed in polar coordinates with the angle equal to zero, is treated as a real number.
- Press MATH 0 to return the complex conjugate of the specified complex number.

ERROR AND CALCULATION RANGES

Errors
An error will occur if an operation exceeds the calculation ranges, or if a mathematically illegal operation is attempted. When an error occurs, pressing \square (or \square) automatically moves the cursor back to the place in the equation where the error occurred. Edit the equation or press (ONOC to clear the equation.
Error Codes and Error Types
Syntax error (Error 1):

- An attempt was made to perform an invalid operation.

Example: 2 2ndF \rightarrow © θ
Calculation error (Error 2):

- The absolute value of an intermediate or final calculation result equals or exceeds $10{ }^{100}$.
- An attempt was made to divide by 0 (or an intermediate calculation resulted in zero)
- The calculation ranges were exceeded while performing calculations.

Depth error (Error 3):
-The available number of buffers was exceeded. (There are 10 buffers* for numeric
values and 24 buffers for calculation instructions.)
5 buffers in STAT mode and complex number mode

- Data items exceeded 100 in the statistics mode.

Equation too long (Error 4):

- The equation exceeded its maximum input buffer (142 characters). An equation
must be shorter than 142 characters.
Equation recall error (Error 5):
- The stored equation contains a function not available in the mode used to recall the equation.
For example, if a numerical value with numbers other than 0 and 1 is stored as
a decimal, etc., it cannot be recalled when the calculator is set to binary.
Memory over error (Error 6):
- Equation exceeded the formula memory buffer (256 characters in total in F1-F4).

Calculation Ranges
Within the ranges specified, this calculator is accurate to ± 1 of the least significant digit of the mantissa. However, a calculation error increases
in continuous calculations due to accumulation of each calculation error.
(This is the same for $y^{x}, x \sqrt{x}, n!, e^{x}$, In etc., where continuous calculations
are performed internally.)
Additionally, a calculation error will accumulate and become larger in the vicinity of inflection points and singular points of functions.

Calculation ranges:

$\pm 10^{-99} \sim \pm 9.999999999 \times 10^{99}$ and 0 .
If the absolute value of an entry or a final or intermediate result of a calculation is less than 10^{-99}, the value is considered to be 0 in calculations and in the display.

BATTERY REPLACEMENT

otes on Battery Replacement

mproper handling of batteries can cause electrolyte leakage or explosion. Be sure to
observe the following handling rules.

- Make sure the new battery is the correct type
-When installing, orient the battery properly as indicated in the calculator
-The battery is factory-installed before shipment, and may be exhausted before it reaches the service life stated in the specifications.

Notes on erasure of memory contents
When the battery is replaced, the memory contents are erased. Erasure can also occur if the calculator is defective or when it is repaired. Make a note of all important memory contents in case accidental erasure occurs.

When to Replace the Batteries
If the display has poor contrast or nothing appears on the display even when ow/C
pressed in dim lighting, it is time to replace the batteries.

Cautions

An exhausted battery left in the calculator may leak and damage the calculator.
-Fluid from a leaking battery accidentally entering an eye could result in serious injury.
Should this occur, wash with clean water and immediately consult a doctor.

- Should fluid from a leaking battery come in contact with your skin or clothes, immediately wash with clean water.
- If the product is not to be used for some time, to avoid damage to the unit from leaking batteries, remove them and store in a safe place.
Do not leave exhausted batteries inside the product.
- Keep batteries out of the reach of children

Explosion risk may be caused by incorrect handling.

- Do not throw batteries into a fire as they may explode.

Replacement Procedure

. Turn the power off by pressing (2ndF OFF.
. Remove the screws. (Fig. 1)
3. Lift the battery cover to remove
4. Remove the used battery by prying it out with a ball-point pen or other similar pointed device. (Fig. 2)
5. Install one new battery. Make sure the "+" side is facing up.
6. Replace the cover and screws.
7. Press the RESET switch with the tip of a ball-point pen or similar object.

- Make sure that the display appears as shown below. If the display does not appear as shown, remove the battery, reinstall it, and check the display once again.

[11 Δ

(1)3(5+2) $=$	(ONC) 3 $3^{5}+2 \square \square$	21.
(2) $3 \times 5+2=$	$3 \times 5+2 ¢$	17.
(3) $3 \times 5+3 \times 2=$	$3 \triangle 5+3 \times 2 \square$	21.
\rightarrow (1)	[2 dif \triangle	21.
\rightarrow (2)	\checkmark	17.
\rightarrow (3)	\square	21.
\rightarrow (2)	\square	17.

This calculator will turn itself off to save battery power if no key is pressed for approximately 10 minutes.

SPECIFICATIONS

Calculations: Scientific calculations, complex number calculations, equatio olvers, statistical calculations, etc.-
Internal calculars: Mas,
Pending ope
ang operations. 24 calculations, 10 numeric values in the normal mode (5 numeric values in STAT mode and complex number mode)
Power source: Built-in solar cells
$1,5 \mathrm{~V} \ldots$ (DC): Akkaline batterie (LR44 or equivalent) $\times 1$
Operating time: Approx. 5,000 hours when continuously displaying 55555 at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
(varies according to use and other factors)
Operating temperature:
$0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}-104^{\circ} \mathrm{F}\right)$
Dimensions: $\quad 80 \mathrm{~mm} \times 161 \mathrm{~mm} \times 15 \mathrm{~mm}$
Weight: \quad Approx. 110 g (with batteries)
Accessories: Battery $\times 1$ (installed), operation manual and hard case
FOR MORE INFORMATION ABOUT SHARP CALCULATORS VISIT:
http://www.sharp-calculators.com

$\mathrm{d} / \mathrm{d} x\left(x^{4}-0.5 x^{3}+6 x^{2}\right)$	ON／C）ALPMA x（ $y^{x} 4-0.5$（ALPMA	
（ $x=2$	$x x^{3}+6$ ALPHA x	$\begin{array}{r} 50 . \\ 130.5000029 \end{array}$
$\mathrm{d} x=0.00002$	（2ndF）d／dx） 2 ENT ENT	
（ $x=3$	（ENT） 3 ENTT 0.001 ENT	
d $x=0.001$		
$\int_{2}^{8}\left(x^{2}-5\right) \mathrm{d} x$	（ON／C）ALPHA x（ x^{2}（ -5	
$\mathrm{n}=100$	（ d d 2 2 ENT 8 ENT）ENT	138.
$\mathrm{n}=10$	ENT ENT EENT 10 EENT	138.
【7］DRG		
$90^{\circ} \rightarrow$［ rad$]$	ON／C） 90 ［ 2 dF）（DRG	1.570796327
\rightarrow［g］	2ndF（0RGP	100.
$\rightarrow\left[{ }^{\circ}\right]$	2ndF）（RGG	90.
$\sin ^{-1} 0.8=\left[{ }^{\circ}\right]$	2ndF） $\sin ^{-1} 0.8 \square$	53.13010235
\rightarrow［rad］	（2ndF）DRG	0.927295218
\rightarrow［g］	2ndF）DRG	59.03344706
$\rightarrow\left[{ }^{\circ}\right]$	2ndF）DRG	53.13010235

【8】 ALPHA RCL STO	M +M －ANS F1 F2	F3 F4
	ON／C） 8×2 STO）M	16.
$24 \div(8 \times 2)=$	$24 \div$ ALPHA $M=$	1.5
$\underline{(8 \times 2) \times 5=}$	（AIPHA $M \times 5$	80.
	ON／C）（STO）M	0.
\＄150×3：M ${ }_{1}$	$150 \times 3 \times{ }^{(1)}$	450.
＋）\＄250：M $\mathrm{M}_{2}=\mathrm{M}_{1}+250$	$250{ }^{\text {M }+}$	250.
－） $\mathrm{M}_{2} \times 5 \%$	RCL M $\times 2$ 2ndF \％	35.
M	2ndF）$M-\mathrm{RCL} M$	665.
\＄1 $=¥ 110$	110 STO Y	110.
$¥ 26,510=\$$ ？	$26510 \div$ RCL Y Y	241.
\＄2，750＝\＃？	$2750 \times(\mathrm{RCL} \times$	302＇500．
$\mathrm{r}=3 \mathrm{~cm}(\mathrm{r} \rightarrow \mathrm{Y})$	3 STO）Y	3.
$\pi \mathrm{r}^{2}=$ ？	π AIPPA $\triangle x^{2} \times$	28.27433388
$\frac{24}{4+6}=2.4 \ldots(\mathrm{~A})$	$24 \div 4+5 \square \square$	2.4
$3 \times(\mathrm{A})+60 \div(\mathrm{A})=$		32.2
$\pi r^{2} \Rightarrow F 1$	π ALPHA Y ，x^{2}	
	$3 \text { STO F1 }$	F1 3.
$\rightarrow_{3} \mathrm{~V}=$ ？	RCL $F 1 \times 4 \square 3 \square$	37.69911184

［9］

6＋4＝ANS	ON／C） $6+4 \square$	10.
ANS＋5	$\pm 5 \square$	15.
$8 \times 2=A N S$	$8 \times 2 \square$	16.
ANS ${ }^{2}$	$x^{2}=$	256.
44＋37＝ANS	$44+37 \square$	81.
$\sqrt{\text { ANS }}=$	（2ndF）$\sqrt{\text { d }}=$	9.

【10】 $a^{b / c} d / c$

$3 \frac{1}{2}+\frac{4}{3}=\left[\mathrm{a} \frac{\mathrm{b}}{\mathrm{c}}\right]$	$\begin{aligned} & (O N / C) 3 \longdiv { a } 3 1 / a ^ { b / c } 2 \square + \\ & 4 a^{b / c} 3 \square \end{aligned}$	$4{ }_{\text {「 } 5 \text { 「 } 6 * ~}^{\text {＊}}$
\rightarrow［a．xxx］	$\mathrm{a}^{\mathrm{b} / \mathrm{c}}$	4.833333333
$\rightarrow[\mathrm{d} / \mathrm{c}]$	2ndF）d／c	29 「 6
$10^{\frac{2}{3}}=$		4.641588834
$\left(\frac{7}{5}\right)^{5}=$	$7{ }^{4} /{ }^{\text {a }}$ 5 $y^{x} 5 \square$	$16807{ }_{\text {－}}{ }^{\text {r }}$
$\left(\frac{1}{8}\right)^{\frac{1}{3}}=$	$\begin{aligned} & 1 \longdiv { a ^ { b / c } } 8 \longdiv { y ^ { x } } 1 \longdiv { a ^ { b / c } } 3 \\ & \Rightarrow \end{aligned}$	1 「2
$\sqrt{\frac{64}{225}}=$	2ndF） $64{ }^{\text {a }}$ \％ $225 \square$	$8{ }_{\square} 15$
$\frac{2^{3}}{3^{4}}=$		$8{ }_{\ulcorner } 81$
$\frac{1.2}{2.3}=$	$1.2 \square \mathrm{a}^{\mathrm{b} / \mathrm{c}} 2.3 \square$	12－23
$\frac{1^{\circ} 2^{\prime} 3^{\prime \prime}}{2}=$	1 （DWS 2 （DWS $3 a^{\text {b／c }} 2 \times$	$0^{\circ} 31$＇1．5＂
$\frac{1 \times 10^{3}}{2 \times 10^{3}}=$	1 Exp 3 ame 2 Exp $3 \square$	1 「2
A $=7$	ON／C 7 STO A	7.
$\frac{4}{A}=$		4 「7
$\begin{aligned} & 1.25+\frac{2}{5}=[a . x x x] \\ & \rightarrow\left[a \frac{b}{c}\right] \end{aligned}$	$\begin{aligned} & 1.25+2 \square 5 \square a^{\mathrm{b} / \mathrm{c}} 5 \\ & \mathrm{a}^{\mathrm{b} / \mathrm{c}} \end{aligned}$	1.65 $1+13{ }_{\ulcorner } 20$

【11］$\rightarrow B I N \rightarrow O E N \rightarrow$ NEX $\rightarrow D E C$ NEG $N O T \rightarrow A N D$

HEX（1FF）＋	2ndF $\operatorname{HEx} 1 \mathrm{FF}$ 2ndF 0 OTT	
OCT $(512)=$	$512 \Rightarrow$	$1511{ }^{\circ}$
HEX（？）	2ndF HEx	$349{ }^{\text {H }}$
2FEC－	（ON／C）STO M（2ndF HEX	－
$2 \mathrm{C} 9 \mathrm{E}=(\mathrm{A})$	$2 \mathrm{C9E} \mathrm{M}+^{+}$	$34 E^{\text {H }}$
＋）2000－	$2000-$	
1901＝（B）	1901 M＋	6FF ${ }^{\text {H }}$
（C）	RCL M	A4d ${ }^{\mathrm{H}}$
1011 AND	ON／C（2ndF－BIN 1011 AND	
$101=$（BIN）	$101 \Rightarrow$	$1{ }^{\text {b }}$
5 A OR C3 $=(\mathrm{HEX}$ ）	2ndF HEX 5A OR C3 $=$	$d b^{+1}$
NOT $10110=$ （BIN）	（2ndF \rightarrow BiN ${ }^{\text {NOT }} 10110 \square$	$1111101001^{\text {b }}$
24 XOR 4 ＝（OCT）	［2ndF - OCT $24 \times$	20°
B3 XNOR	2ndF HEX） $\mathrm{B} 3 \times \mathrm{XNOR}$	
$2 \mathrm{D}=$（HEX）	2D $\quad=$	FFFFFFFF661 ${ }^{\text {H }}$
\rightarrow DEC	2ndF \triangle DEC	－159．

【12】 D®M＇S \rightarrow DEG MATH $(\rightarrow \mathbf{s e c}, \rightarrow \mathbf{m i n})$

$12^{\circ} 39^{\prime} 18.05^{\prime \prime}$	ON／C 12 （D＇WS 39 D＇MS 18.05	
\rightarrow［10］	（2ndF）\oplus DEG	12.65501389
123．678 \rightarrow［60］	123.678 （2ndF）$¢$ ¢ ${ }^{\text {a }}$（	123 ${ }^{\circ} 40^{\prime} 40.8^{\prime \prime}$
$3 \mathrm{~h} 30 \mathrm{~m} 45 \mathrm{~s}+$	3 （D．MS 30 （DTMS 45 ± 6（DWS	
$6 \mathrm{~h} 45 \mathrm{~m} 36 \mathrm{~s}=[60]$	45 （DTMS $36 \square$	10 ${ }^{\circ} 16^{\prime 2} 21 . "$
$1234^{\circ} 56^{\prime} 12^{\prime \prime}+$	1234 （DW＇S 56 （D＇MS $12++$	
$0^{\circ} 0^{\prime} 34.567^{\prime \prime}=[60]$	0 D＇MS 0 （ DM＇s $34.567 \square$	123456＇47．＂
3 h 45 m －	3 （0．＇s $45-1.69 \square$	
$1.69 \mathrm{~h}=$［60］	2ndF）$¢$ DEG	2 ${ }^{\circ}{ }^{\prime} 36 . "$
$\sin 62^{\circ} 12^{\prime} 24^{\prime \prime}=[10]$	（sin） 62 （DW＇S） 12 （DM＇S $24 \square$	0.884635235
$24^{\circ} \rightarrow$［＂］	24 （D＇M ${ }^{\text {P }}$（MATH） 2	86 ＇400．
$1500^{\prime \prime} \rightarrow$［＇］	0 （DW＇S） 0 （D＇WS 1500 （MATH） 3	25.

【13］$\rightarrow r \theta \rightarrow x y \rightarrow \square$

	ON／C） 6 2ndF $\rightarrow 4$	
$\left(\begin{array} { l } { x = 6 } \\ { y = 4 } \end{array} \rightarrow \left(\begin{array}{l} r= \\ \theta=\left[{ }^{\circ}\right] \end{array}\right.\right.$	2ndF）$\rightarrow r \theta[r]$	7.211102551
	2ndF）$\leftrightarrows[\theta]$	33.69006753
	［ ndF F $\leftrightarrow[r]$	7.211102551
$\left(\begin{array}{l}r=14 \\ \theta=36\left[{ }^{\circ}\right]\end{array} \rightarrow\left(\begin{array}{l}x= \\ y=\end{array}\right.\right.$	14 2ndF $\square 36$	
	（2ndF）$\rightarrow x y$［ x ］	11.32623792
	$\underline{2 n d F} \leftrightarrow[y]$	8.228993532
	$\underline{\text { 2ndF }} \leftrightarrows \rightarrow[x]$	11.32623792

$\mathrm{V}_{0}=15.3 \mathrm{~m} / \mathrm{s}$	（on／c） $15.3 \times 10 \pm 2$（2ndF）$x^{-1} \times x$
$\mathrm{t}=10 \mathrm{~s}$	2ndF CNST $03 \times 10 \times x^{2} \times 643.3325$
$\mathrm{V}_{0} \mathrm{t}+\frac{1}{2} \mathrm{gt}^{2}=? \mathrm{~m}$	

$125 \mathrm{yd}=$ ？ m	（ON／C） 125 （2ndF）CONV $5 \square$	114.3

【16】 MATH（k，M，G，T，m，$\mu, \mathbf{n}, \mathbf{p}, \mathbf{f})$

$100 \mathrm{~m} \times 10 \mathrm{k}=$		1 ＇000．
【17】 MDF SETUP		
$5 \div 9=$ ANS	ON／C SETUP 1 － 6 SETUP 2	
ANS $\times 9=$	$5 \div 9 \square$	0.6
［FIX，TAB＝1］	$\times 9 \square$	5.0
	$5 \square 9 ¢$ 2ndF MDF	0.6
	（ $9 \times{ }^{\star 2}$	5.4
	（SETUP 1 － 3	

${ }^{\star 1} 5.5555555555555 \times 10^{-1} \times$
${ }^{*} 20.6 \times 9$

【18】（MATH）（SOLV）

$\sin x-0.5$	（ON／C） \sin（APPHA $x \rightarrow 0.5$	
Start＝0	（MATH） 00 ENT ENT	30.
Start＝ 180	（ENT） 180 ［ENT［ENT	150.

	MODE 0	
$f(x)=x^{3}-3 x^{2}+2$	（ALPHA x（ $y^{x} 3-3$（ALPHA	
$x=-1$	$1+/-$ ENT	－2．
$x=-0.5$	2ndF ALGB $0.5+$ ENT	1.125
$\sqrt{A^{2}+B^{2}}$	（2ndF）$\sqrt{ }$（ ALPHA $A \rightarrow x^{2}$	＋
	（ALPMA B（ x^{2} 2ndF ALGB	
$\mathrm{A}=2, \mathrm{~B}=3$	2 ENT） 3 ENT	3.605551275
$\mathrm{A}=2, \mathrm{~B}=5$	（2ndF） ALGB ENT 5 ENT	5.385164807

 $x^{\prime} y^{\prime} \leftrightarrow \rightarrow$ MATH $(\rightarrow \mathbf{t}, \mathbf{P}(, \mathbf{Q}(, \mathbf{R}()$

【21】 DATA $\boldsymbol{\square}$

$\left[\begin{array}{c}\text { DATA } \\ \end{array}\right]$		
30	（MODE） 10	0.
40	30 （DATA）	1.
40	40 （ $x, y) 2$（DATA）	2.
50	50 （DATA	3.
$\stackrel{\downarrow}{\stackrel{\downarrow}{\text { DATA }}]}$		
30	$\square \nabla \mathrm{V}$	
45	45 （x，y） 3 （DATA）	$X 2=45$.
45	\checkmark	$N 2=3$.
45		
60	V 60 （DATA）	$X 3=60$.

［22］

$$
\begin{array}{ll}
\bar{x}=\frac{\Sigma x}{n} & \sigma x=\sqrt{\frac{\Sigma x^{2}-n \bar{x}^{2}}{n}} \\
s x=\sqrt{\frac{\Sigma x^{2}-n \bar{x}^{2}}{n-1}} & \begin{array}{l}
\sum x=x_{1}+x_{2}+\cdots+x_{n} \\
\Sigma x^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{n}{ }^{2}
\end{array} \\
\bar{y}=\frac{\Sigma y}{n} & \sigma y=\sqrt{\frac{\Sigma y^{2}-n \bar{y}^{2}}{n}} \\
s y=\sqrt{\frac{\Sigma y^{2}-n \bar{y}^{2}}{n-1}} & \begin{array}{l}
\Sigma x y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \\
\Sigma y=y_{1}+y_{2}+\cdots+y_{n} \\
\Sigma y^{2}=y_{1}{ }^{2}+y_{2}{ }^{2}+\cdots+y_{n}^{2}
\end{array}
\end{array}
$$

【23】

 $R(t)=\frac{1}{\sqrt{2 \pi}} \int_{t}^{\infty} e^{-\frac{x^{2}}{2}} d x$

$t=\frac{x-\bar{x}}{\sigma x} \quad$ Standardization conversion formula

[24】 MODE (2-VLE)

$\left[\begin{array}{l}a_{1} x+b_{1} y=c_{1} \\ a_{2} x+b_{2} y=c_{2}\end{array}\right.$	$\|\mathrm{D}\|=\left\lvert\, \begin{aligned} & a_{1} b_{1} \\ & a_{2} b_{2}\end{aligned}\right.$	
	(MODE) 20	
$2 x+3 y=4$	2 ENT 3 ENT 4 ENT	
$5 x+6 y=7$	5 (ENT) 6 (ENT) 7	
$x=$?	(ENT) [x]	
$y=$?	(ENT) [y]	
$\operatorname{det}(\mathrm{D})=$?	ENT $[\operatorname{det}(\mathrm{D})]$-3.	

[25] MODE (3-VLE)

[26] MODE (QUAD, CUBIC)

	(MODE 2 2	
$\begin{aligned} & 3 x^{2}+4 x-95=0 \\ & x 1=? \\ & x 2=? \end{aligned}$	3 ENT 4 ENT $+/-95$	
	ENT	5.
	ENT	-6.333333333
	2ndF (ENT	5.
	MODE 23	
$\begin{aligned} & 5 x^{3}+4 x^{2}+3 x+7=0 \\ & x 1=? \\ & x 2=? \end{aligned}$	5 ENT 4 ENT 3 ENT 7	
	ENT	-1.233600307
	ENT	0.216800153
	2ndF) \leftrightarrow	+1.043018296 i
$x 3=$?	ENT	0.216800153
	2ndF) \leftrightarrow	- $\mathbf{1 . 0 4 3 0 1 8 2 9 6 ~}_{i}$

[27] (MODE) (CPLX)

$\begin{aligned} & (12-6 i)+(7+15 i)- \\ & (11+4 i)= \end{aligned}$	
$\begin{aligned} & 6 \times(7-9 i) \times \\ & (-5+8 i)= \end{aligned}$	
$\begin{aligned} & 16 \times\left(\sin 30^{\circ}+\right. \\ & \left.i \cos 30^{\circ}\right)\left(\sin 60^{\circ}+\right. \\ & \left.i \cos 60^{\circ}\right)= \end{aligned}$	
$\begin{gathered} \begin{array}{c} (1+i) \\ \downarrow \\ r=?, \theta=? \circ \end{array} \end{gathered}$	
$(2-3 i)^{2}=$	
$\frac{1}{1+i}=$	$\underset{(2 n d F}{\square} \leftrightarrows[y]$
$\operatorname{CONJ}(5+2 i)=$	

[28]

Function	Dynamic range											
$\sin x, \cos x,$ $\tan x$	```DEG: \(\|x	<10^{10}\) \((\tan x:	x	\neq 90(2 n-1))^{*}\) RAD: \(\quad	x	<\frac{\pi}{180} \times 10^{10}\) \(\left(\tan x:	x	\neq \frac{\pi}{2}(2 n-1)\right)^{*}\) GRAD: \(x	<\frac{10}{9} \times 10^{10}\) \((\tan x:	x	\neq 100(2 n-1))^{*}\)```
$\sin ^{-1} x, \cos ^{-1} x$	$\|x\| \leq 1$											
$\tan ^{-1} x, \sqrt[3]{x}$	$\|x\|<10^{100}$											
$\ln x, \log x$	$10^{-99} \leq x<10^{100}$											
y^{x}	$\begin{array}{rl} -y>0:-10^{100}<x \log y<100 \\ y=0 & 0<x<10^{100} \\ \cdot y<0: & x=n \\ & \left(0<\|x\|<1: \frac{1}{x}=2 n-1, x \neq 0\right)^{*}, \\ & -10^{100}<x \log \|y\|<100 \\ \hline \end{array}$											
$x \sqrt{y}$	$\begin{aligned} & \cdot y>0:-10^{100}<\frac{1}{x} \log y<100(x \neq 0) \\ & \cdot y=0: 0<x<10^{100} \\ & \cdot y<0: \quad x=2 n-1 \\ & \quad\left(0<\|x\|<1: \frac{1}{x}=n, x \neq 0\right)^{*}, \\ &-10^{100}<\frac{1}{x} \log \|y\|<100 \end{aligned}$											
e^{x}	$-10^{100}<x \leq 230.2585092$											
10^{x}	$-10^{100}<x<100$											

$\begin{aligned} & \sinh x, \cosh x, \\ & \tanh x \end{aligned}$	$\|x\| \leq 230.2585092$
$\sinh ^{-1} x$	$\|x\|<10^{50}$
$\cosh ^{-1} x$	$1 \leq x<10^{50}$
$\tanh ^{-1} x$	$\|x\|<1$
x^{2}	$\|x\|<10^{50}$
x^{3}	$\|x\|<2.15443469 \times 10^{33}$
\sqrt{x}	$0 \leq x<10^{100}$
x^{-1}	$\|x\|<10^{100}(x \neq 0)$
n !	$0 \leq \mathrm{n} \leq 69^{*}$
$n \mathrm{nPr}$	$\begin{aligned} & 0 \leq r \leq n \leq 9999999999^{*} \\ & \frac{n!}{(n-r)!}<10^{100} \end{aligned}$
nCr	$\begin{aligned} & 0 \leq r \leq n \leq 9999999999^{*} \\ & 0 \leq r \leq 69 \\ & \frac{n!}{(n-r)!}<10^{100} \end{aligned}$
\leftrightarrow DEG, D ${ }^{\text {M }}$ 'S	$0^{\circ} 0^{\prime} 0.00001 " \leq\|x\|<10000^{\circ}$
$x, y \rightarrow r, \theta$	$\sqrt{x^{2}+y^{2}}<10^{100}$
$r, \theta \rightarrow x, y$	$\begin{aligned} & 0 \leq r<10^{100} \\ & \text { DEG: } \quad\|\theta\|<10^{10} \\ & \text { RAD: } \quad\|\theta\|<\frac{\pi}{180} \times 10^{10} \\ & \text { GRAD: }\|\theta\|<\frac{10}{9} \times 10^{10} \end{aligned}$
DRG	$\begin{aligned} & \text { DEG } \rightarrow \text { RAD, GRAD } \rightarrow \text { DEG: }\|x\|<10^{100} \\ & \text { RAD } \rightarrow \text { GRAD: }\|x\|<\frac{\pi}{2} \times 10^{98} \\ & \hline \end{aligned}$
$(\mathrm{A}+\mathrm{Bi})+(\mathrm{C}+\mathrm{D} i)$	$\|\mathrm{A}+\mathrm{C}\|<10^{100},\|\mathrm{~B}+\mathrm{D}\|<10^{100}$
$(\mathrm{A}+\mathrm{Bi})-(\mathrm{C}+\mathrm{D} i)$	$\|\mathrm{A}-\mathrm{C}\|<10^{100},\|\mathrm{~B}-\mathrm{D}\|<10^{100}$
$(\mathrm{A}+\mathrm{Bi}) \times(\mathrm{C}+\mathrm{D} i)$	$\begin{aligned} & (A C-B D)<10^{100} \\ & (A D+B C)<10^{100} \\ & \hline \end{aligned}$
$(\mathrm{A}+\mathrm{Bi}) \div(\mathrm{C}+\mathrm{D} i)$	$\begin{aligned} & \frac{\mathrm{AC}+\mathrm{BD}}{\mathrm{C}^{2}+\mathrm{D}^{2}}<10^{100} \\ & \frac{\mathrm{BC}-\mathrm{AD}}{\mathrm{C}^{2}+\mathrm{D}^{2}}<10^{100} \\ & \mathrm{C}^{2}+\mathrm{D}^{2} \neq 0 \end{aligned}$
$\begin{aligned} & \rightarrow \mathrm{DEC} \\ & \rightarrow \mathrm{BIN} \\ & \rightarrow \mathrm{PEN} \\ & \rightarrow \mathrm{OCT} \\ & \rightarrow \mathrm{HEX} \\ & \text { AND } \\ & \text { OR } \\ & \text { XOR } \\ & \text { XNOR } \end{aligned}$	DEC $:\|x\| \leq 9999999999$ BIN $: 1000000000 \leq x \leq 1111111111$ $0 \leq x \leq 111111111$ PEN $:$ $2222222223 \leq x \leq 4444444444$ $0 \leq x \leq 2222222222$ OCT $:$ $4000000000 \leq x \leq 7777777777$ $0 \leq x \leq 3777777777$ HEX $:$ FDABF41C01 $\leq x \leq$ FFFFFFFFFFF $0 \leq x \leq 2540$ BE3FF
NOT	BIN $: 1000000000 \leq x \leq 1111111111$ $0 \leq x \leq 11111111$ PEN $: 2222222223 \leq x \leq 4444444444$ $0 \leq x \leq 2222222221$ OCT $: 4000000000 \leq x \leq 7777777777$ $0 \leq x \leq 3777777777$ HEX $:$ FDABF41C01 $\leq x \leq$ FFFFFFFFFF $0 \leq x \leq 2540$ BE3FE
NEG	BIN $: 1000000001 \leq x \leq 1111111111$ $0 \leq x \leq 11111111$ PEN $:$ $2222222223 \leq x \leq 4444444444$ $0 \leq x \leq 2222222222$ OCT $: 4000000001 \leq x \leq 7777777777$ $0 \leq x \leq 3777777777$ HEX $:$ FDABF41C01 $\leq x \leq$ FFFFFFFFFF $0 \leq x \leq 2540 B E 3 F F$

*n, m, r: integer

Physical constants and metric conversions are shown in the tables

PHYSICAL CONSTANTS				2ndF CNST $01-52$	
No. SYMBOL	UNIT	No. SYMBOL		No. SYMBOL	UNIT
$01-c, c_{0}$	$\mathrm{m} \mathrm{s}^{-1}$	19- μ_{B}	JT^{-1}	$37-\mathrm{eV}$	J
02-G	$\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	20- μ_{e}	JT^{-1}	38-t	K
03- g_{n}	$\mathrm{m} \mathrm{s}^{-2}$	$21-\mu_{N}$	$\mathrm{J} \mathrm{T}^{-1}$	$39-A U$	m
04- m_{e}	kg	$22-\mu_{p}$	JT^{-1}	40-pc	m
05-mp	kg	$23-\mu_{n}$	JT^{-1}	$41-M\left({ }^{(12} C\right)$	$\mathrm{kg} \mathrm{mol}^{-1}$
06-m m_{n}	kg	$24-\mu_{\mu}$	JT^{-1}	42- \hbar	Js
07- m_{μ}	kg	$25-\lambda_{c}$	m	$43-E_{h}$	J
08-lu	kg	$26-\lambda_{c, p}$	m	44-G ${ }_{0}$	s
09-e	C	27- σ	W m ${ }^{-2} \mathrm{~K}^{-4}$	45- α^{-1}	
10-h	J s	$28-N_{A}, L$	mol^{-1}	$46-m_{p} / m_{e}$	
11-k	JK^{-1}	$29-V_{m}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	47-Mu	$\mathrm{kg} \mathrm{mol}^{-1}$
12- μ_{0}	Na^{-2}	$30-R$	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	48- $\lambda_{c, n}$	m
$13-\varepsilon_{0}$	$\mathrm{F} \mathrm{m}^{-1}$	$31-F$	$\mathrm{C} \mathrm{mol}^{-1}$	49- c_{1}	W m ${ }^{2}$
14- r_{e}	m	$32-R_{K}$	Ohm	50-c ${ }_{2}$	mK
15- α		$33-\mathrm{e} / m_{e}$	Ckg^{-1}	$51-Z_{0}$	Ω
16-a ${ }_{0}$	m	$34-h / 2 m_{e}$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	52-atm	Pa
17-Rm	m^{-1}	$35-\gamma_{p}$	$\mathrm{s}^{-1} \mathrm{~T}^{-1}$		
18- Φ_{0}	Wb	36-K,	$\mathrm{Hz} \mathrm{V}^{-1}$		

METRIC CONVERSIONS				x 2ndF CONV 1-44	
No.	UNIT	No.	UNIT	No.	UNIT
1	$\mathrm{in} \rightarrow \mathrm{cm}$	16	$\mathrm{kg} \rightarrow \mathrm{lb}$	31	$J \rightarrow$ calit
2	$\mathrm{cm} \rightarrow$ in	17	${ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C}$	32	calit \rightarrow J
3	$\mathrm{ft} \rightarrow \mathrm{m}$	18	${ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F}$	33	$\mathrm{hp} \rightarrow \mathrm{W}$
4	$\mathrm{m} \rightarrow \mathrm{ft}$	19	gal (US) $\rightarrow \ell$	34	$\mathrm{W} \rightarrow \mathrm{hp}$
5	$\mathrm{yd} \rightarrow \mathrm{m}$	20	$\ell \rightarrow$ gal (US)	35	$\mathrm{ps} \rightarrow \mathrm{W}$
6	$\mathrm{m} \rightarrow \mathrm{yd}$	21	$\mathrm{gal}(\mathrm{UK}) \rightarrow \ell$	36	$\mathrm{W} \rightarrow \mathrm{ps}$
7	mile \rightarrow km	22	$\ell \rightarrow$ gal (UK)	37	$\mathrm{kg} / \mathrm{cm}^{2} \rightarrow \mathrm{~Pa}$
8	$\mathrm{km} \rightarrow$ mile	23	$\mathrm{fl} \mathrm{oz} \mathrm{(US)} \rightarrow$ m ℓ	38	$\mathrm{Pa} \rightarrow \mathrm{kgf} / \mathrm{cm}^{2}$
9	n mile $\rightarrow \mathrm{m}$	24	$\mathrm{m} \ell \rightarrow \mathrm{fl}$ oz (US)	39	$\mathrm{atm} \rightarrow \mathrm{Pa}$
10	$\mathrm{m} \rightarrow \mathrm{n}$ mile	25	$\mathrm{fl} \mathrm{oz} \mathrm{(UK)} \rightarrow \mathrm{~m} \ell$	40	$\mathrm{Pa} \rightarrow \mathrm{atm}$
11	acre $\rightarrow \mathrm{m}^{2}$	26	$\mathrm{m} \ell \rightarrow \mathrm{fl} \mathrm{oz} \mathrm{(UK)}$	41	$\mathrm{mmHg} \rightarrow \mathrm{Pa}$
12	$\mathrm{m}^{2} \rightarrow$ acre	27	$\mathrm{J} \rightarrow \mathrm{cal}$	42	$\mathrm{Pa} \rightarrow \mathrm{mmHg}$
13	$\mathrm{Oz} \rightarrow \mathrm{g}$	28	cal $\rightarrow \mathrm{J}$	43	$\mathrm{kgf} \cdot \mathrm{m} \rightarrow \mathrm{J}$
14	$\mathrm{g} \rightarrow 0 \mathrm{z}$	29	$\mathrm{J} \rightarrow$ cal ${ }_{15}$	44	$\mathrm{J} \rightarrow \mathrm{kgf} \cdot \mathrm{m}$
15	$\mathrm{lb} \rightarrow \mathrm{kg}$	30	cal ${ }_{15 \rightarrow}$ J		

Manufactured by:
SHARP CORPORATION
1 Takumi-cho, Sakai-ku, Sakai City, Osaka 590-8522, Japan

For EU only:
Imported into Europe by:
MORAVIA Consulting spol. s r.o.
Olomoucká 83,62700 Brno,
Czech Republic

For UK only:
Imported into UK by: MORAVIA Europe Ltd.
Belmont House, Station Way, Crawley, West Sussex RH10 1JA, Great Britain

