OPERATION MANUAL

INTRODUCTION

Thank you for purchasing the SHARP Scientific Calculator Model EL－510RT． After reading this manual，store it in a convenient location for future reference． Note：
－On the sheet with calculation examples is used english notation（with a decimal point）．
This product uses a period as a decimal point．

Operational Notes

Do not carry the calculator around in your back pocket，as it may break when you sit down．The display is made of glass and is particularly tragile．
－Keep the calculator away from extreme heat such as on a car dashboard or near a heater，and avoid exposing it to excessively humid or dusty environments． Since this product is not waterproof，do not use it or store it where fluids，for example water，can splash onto it．Raindrops，water spray，juice，coffee，steam，perspiration， ett．will also cause malfunction．
－Clean with a soft，dry cloth．Do not use solvents or a wet cloth
－Do not drop it or apply excessive force
－Never dispose of batteries in a fire．
Keep batteries out of the reach of children．
－For the sake of your health，try not to use this product for long periods of time．If you need to use the product for an extended period，be sure to allow your eyes，hands， arms，and body adequate rest periods（about 10－15 minutes every hour），
If you experience any pain of fatigue while using this product，discontinue use immediately．If the discomfort continues，please consult a doctor．
－This product，including accessories，may change due to upgrading without prior notice． NOTICE
－SHARP strongly recommends that separate permanent witten records be kept of all important data．Data may be lost or altered in virtually any electronic memory product under certain circumstances．Therefore，SHARP assumes no responsibi－ lity for data lost or othewwise rendered unusable whether as a result of improper use，repairs，defects，battery replacement，use after the specified batery life has expired，or any other cause．
－SHARP will not be liable nor responsible for any incidental or consequential ecc－ nomic or property damage caused by misuse and／or malfunctions of this product and its peripherals，unless such liability is acknowledged by law．
－Press the RESET switch（on the back），with the tip of a ball－point pen or similar object，only in the following cases：
When using for the first time
After replacing the battery
To clear all memory contents
－When an abnormal condition occurs and all keys are inoperative．
Do not use an object with a breakable or sharp tip．Note that pressing the RESET switch erases all data stored in memory．
fservice should be required on this calculator，use only a SHARP senvicing dealer， SHARP approved service facility，or SHARP repair sevice where available． Hard Case

DISPLAY

Appears when the entire equation cannot be displayed．
dF ：Press \square / \square to see the remaining（hidden）section
2ndF ：Appears when 2ndF）is pressed，indicating that the functions shown in same color are enabled．
 （recall）of memory contents and recall of statistics can be performed． Indicates that hyp has been pressed and the hyperbolic functions are enabled．If ¿ndF archyp are pressed，the symbols＂2ndF HYP＂ appear，indicating that inverse hyperbolic functions are enabled
EIX／SCI／ENG ：Indicates the notation used to display a value．
DEG／RAD／GRAD ：Indicates angular units and changes each time $\overline{D R G)}$ is pressed．
STAT：Appears when statistics mode is selected．
$\mathrm{M}: \quad$ Indicates that a value is stored in the independent memory
$x / \Psi / \boldsymbol{F} / \boldsymbol{6}$ ：Appears when the results of coordinate conversions are displayed

BEFORE USING THE CALCULATOR

Key Notation Used in this Manual

$\begin{array}{cll}x^{2} & \text { To specify } x^{2} & : \text { 2ndF } x^{2} \\ \text { Exp } & \end{array}$
－Functions that are printed in orange above the key require 2ndF to be pressed first before the key．Numbers for input value are not shown as keys，but as ordinary numbers．

ower On and Off

Press ONCO to turn the calculator on，and（2ndF OFF to turn it off．

Entering and Correcting the Equation

Cursor keys
－Press \square or to move the cursor．You can also return to the equation after getting an answer by pressing $\square(\square)$ ．
To delete a number／function，move the cursor to the number／function you wish to delete，then press DEL．If the cursor is located at the right end of an equation， the DEL key will function as a back space key．
－If you need to insert a number，move the cursor to the place immediately after where you wish to insert the number then enter the number．

| Clearing the Entry and Memories
 Entry
 Operation | $\mathbf{M}^{* 1}$ | $\mathbf{X}, \mathbf{Y}, r, \theta^{22}$
 STAT，ANS |
| :--- | :---: | :---: | :---: |
| （Display） | | |

O：Clear $\quad x$ ：Retain
＊1 Independent memory M
${ }^{*} 2$ Temporary memories（ $\mathrm{X}, \mathrm{Y}, r, \theta$ ），statistical data，and last answer memory
Priority Levels in Calculation
This calculator performs operations according to the following priority
（1）Fractions（1r4，etc．）（2）Functions preceded by their argument（ $x^{-1}, x^{2}, n!$ ，etc．） （3）$y^{x}, x \sqrt[x]{ }$（4）Implied multiplication of a memory value（2Y，etc．）（5）Functions followed by their argument（sin，cos，etc．）（6）Implied multiplication of a function（2sin30，etc．） （7） $\mathrm{nCr}, \mathrm{nPr}, \mathrm{GCD}, \mathrm{LCM}(8) \times, \div(9)+,-(10)=M+, M-, \Rightarrow \mathrm{M},>D E G,>R A D, \neg G R A D$ ， DATA， $\mathrm{CD}, \rightarrow r \theta, \rightarrow x y$ and other calculation ending instructions
－If parentheses are used，parenthesized calculations have precedence over any other calculations．

INITIAL SET UP

Mode Selection
Normal mode（NORMAL）：（2ndF）（MOOEE 0 （default）
Used to perform arithmetic operations and function calculations．
Statistics mode（STAT）：2ndF MODE 1
Used to perform statistical calculations．
When executing mode selection，temporary memories，statistical variables，statistical data and last answer memory will be cleared even when reselecting the same mode．

Selecting the Display Notation and Decimal Places

Four display notation systems are used to display calculation results：Floating point Fixed decimal point；Scientific notation；and Engineering notation．
When the FIX，SCI，or ENG symbol is displayed，the number of decimal places（TAB）
can be set to any value between 0 and 9 ．Displayed values will be reduced to the corresponding number of digits．
$100000 \div 3=$
［Floating point］
\rightarrow［Fixed decimal point］
［TAB set to 2］
\rightarrow［SClentific notation］
\rightarrow［ENGineering notation］
\rightarrow［Floating point］
ONC $100000 \div 3 \div$ 2ndF FSE

33＇333．33333 33＇333．33333
33＇333．33 3.33×10^{04}
33.33×10^{03}
$33^{\prime} 333.33333$
－If the value for floating point system does not fit in the following range，the calculator will display the result using scientific notation system：
$0.000000001 \leq x \leq 9999999999$

Determination of the Angular Unit

In this calculator，the following three angular units（degrees，radians，and grads）can be specified．

SCIENTIFIC CALCULATIONS
－Press（2ndF）MOOE \square to select the normal mode．
－In each example，press（oNC）to clear the display．
－If the FIX，SCI，or ENG indicator is displayed，clear the indicator by pressing 2ndF FSE．

Arithmetic Operations

【1】－The closing parenthesis \square just before \square or $M+$ may be omitted． －In constant calculations，the addend becomes a constant．Subtraction and division are performed in the same manner．For multiplication，the multiplicand becomes a constant．
－In the constants calculations，constants will be displayed as K ．
Functions
－Refer to the calculation examples of each function．

Random Numbers

A pseudo－random number with three significant digits can be generated by pressing 2ndF $=\square$ ．To generate the next random number，press \triangle
You can perform this function in the normal and statistics modes．
－Random numbers use memory Y ．Each random number is generated on the basis of
the value stored in memory Y （pseudo－random number series）．
Angular Unit Conversions
Each time $\begin{aligned} & \text { ndFF } \\ & \triangle R G P \\ & \text { are pressed，the angular unit changes in sequence．}\end{aligned}$
Memory Calculations【4】

This calculator has four temporary memories（ $\mathrm{X}, \mathrm{Y}, r, \theta$ ），one independent memory (M) and one last answer memory（ANS）．Independent memory and temporary memories are only available in the normal mode．
Temporary memories（ $\mathbf{X}, \mathbf{Y}, r, \theta$ ）
Press（STO and a variable key to store a value in memory．
Press（RCL and a variable key to recall the value from that memory．
To place a variable in an equation，press 2 2dFF $(104+4 \times 4$ and a variable key．
Use of（RCL）or 2ndF बallata will recall the value stored in memory using up to 14 digits． Independent memory（M）
In addition to all the features of temporary memories，a value can be added to or subtracted from an existing memory value．
Last answer memory（ANS）
The calculation result obtained by pressing \Rightarrow or any other calculation ending instruction is automatically stored in the last answer memory．
Chain Calculations
This calculator allows the previous calculation result to be used in the following calculation．The previous calculation result will not be recalled after entering multiple instructions．
Fraction Calculations
This calculator performs arithmetic operations and memory calculations using
fractions，and conversion between a decimal number and a fraction．
－If the number of digits to be displayed is greater than 10 ，the number is converted to and displayed as a decimal number．
Time，Decimal and Sexagesimal Calculations
Conversion between decimal and sexagesimal numbers can be performed．In addition， the four basic arithmetic operations and memory calculations can be carried out using the sexagesimal system．

Coordinate Conversions

－The calculation result is automatically stored in memories $\mathrm{X}, \mathrm{Y}, r, \theta$ ． Calculating the Greatest Common Divisor（GCD）

What is the GCD of 24 and 36 ？	ON／C） 24

Calculating the Least Common Multiple（LCM）
What is the LCM of 15 and $9 ?$

2ndF LLCM 9
45.

STATISTICAL CALCULATIONS I9】
Press ［ndF）$M O 0 E \square$ to select statistics mode．
The following statistics can be obtained：

\bar{x}	Mean of samples（ x data）
$s x$	Sample standard deviation（ x data $)$

$s x$	Sample standard deviation（x data）
σx	Population standard deviation（ x data）

αx	Popuation standard
n	Number of samples

Sum of samples（ x data）
Sum of squares of samples（ x data）
Entered data are kept in memory until（2ndF CA or 2 2ndF（MODE 1 are pressed．
Before entering new data，clear the memory contents．

Data DATA

Data（nol．D）frequency（DATA）（To enter multiples of the same data）
Data Correction
Correction prior to pressing（DATA）immediately after a data entry
Delete incorrect data with ONO，then enter the correct data．
Correction after pressing（DATA：
Press \square to confirm the latest entry and press \because 2ndF $C D$ to delete it．

tatistical Calculation Formulas

In the statistical calculation formulas，an error will occur when：
－The absolute value of the intermediate result or calculation result is equal to
or greater than 1×10^{100} ．
The denominator is zero
－An attempt is made to take the square root of a negative number．

ERROR AND CALCULATION RANGES

An error will occur if an operation exceeds the calculation ranges，or if a mathemati－ cally illegal operation is attempted．When an error occurs，pressing \square（or \square ） automatically moves the cursor back to the place in the equation where the error occurred．Edit the equation or press（oN／C）to clear the equation．

Error Codes and Error Types

Syntax error（Error 1）：
－An attempt was made to perform an invalid operation．
Example： 2 थ2ndF $\rightarrow r \theta$
Calculation error（Error 2）：
－The absolute value of an intermediate or final calculation result equals or exceeds －The ab
10^{100} ．
－An attempt was made to divide by 0 （or an intermediate calculation resulted in zero）．
－The calculation ranges were exceeded while performing calculations．
Depth error（Error 3）：
－The available number of buffers was exceeded．（There are 10 buffers＊for numeric
values and 24 buffers for calculation instructions）
＊5 buffers in STAT mode
Equation too long（Error 4）：
－The equation exceeded its maximum input buffer（ 159 characters）．An equation must be shorter than 159 characters．

Calculation Ranges

Within the ranges specified，this calculator is accurate to ± 1 of the least significant digit of the mantissa．However，a calculation error increases in continuous calculations due to accumulation of each calculation error． （This is the same for $y^{x}, x \sqrt{ }, e^{x}$ ，In etc．，where continuous calculations are performed internally．）
Additionally，a calculation error will accumulate and become larger in the vicinity of inflection points and singular points of functions．
Calculation ranges：
$\pm 10^{-99} \sim \pm 9.999999999 \times 10^{89}$ and 0 ．
If the absolute value of an entry or a final or intermediate result of a calculation is
less than 10^{-99} ，the value is considered to be 0 in calculations and in the display．

BATTERY REPLACEMENT

Notes on Battery Replacement
Improper handling of batteries can cause electrolyte leakage or explosion．Be sure to observe the following handling rules：
Make sure the new battery is the correct type．
When installing，orient the battery properly as indicated in the calculator．
－The battery is factory－installed before shipment，and may be exhausted before it reaches the service life stated in the specifications．

Notes on erasure of memory contents

When the battery is replaced，the memory contents are erased．Erasure can also occur if the calculator is defective or when it is repaired．Make a note of all important memory contents in case accidental erasure occurs．

When to Replace the Batteries

If the display has poor contrast or nothing appears on the display even when（ONC）is pressed in dim lighting，it is time to replace the batteries．
－An exhausted battery left in the calculator may leak and damage the calculator．
－Fluid from a leaking battery accidentally entering an eye could result in serious injury． Should this occur，wash with clean water and immediately consult a doctor． Should fluid from a leaking battery come in contact with your skin or clothes， immediately wash with clean water．
－If the product is not to be used for some time，to avoid damage to the unit from leaking batteries，remove them and store in a safe place．
－Do not leave exhausted batteries inside the product．
－Keep batteries out of the reach of children．
Explosion risk may be caused by incorrect handling．
－Do not throw batteries into a fire as they may explode．
Replacement Procedure
．Turn the power off by pressing 2ndF OFF．
2．Remove the screws．（Fig．1）
3．Lift the battery cover to remove．
4．Remove the used battery by prying it out with a ball－point pen or other similar pointed device．（Fig．2）
5．Install one new battery．Make sure the＂+ ＂side is facing up．
6．Replace the cover and screws．
7．Press the RESET switch with the tip of a ball－point pen or similar object Make sure that the display appears as shown below．If the display does not appear as shown，remove the battery，reinstall it，and check the display once again．

Fig． 1
Fig． 2

Automatic Power Off Function
This calculator will turn itself off to save battery power if no key is pressed for pproximately 10 minutes．

SPECIFICATIONS

Scientific calculations，statistical calculations，etc．
Internal calculations：Mantissas of up to 14 digits
Pending operations： 24 calculations， 10 numeric values （ 5 numeric values in STAT mode）
Power source：Built－in solar cells
$1,5 \mathrm{~V} \ldots$（DC）：Alkaline batterie（LR44 or equivalent）$\times 1$
Operating time：Approx． 3,000 hours when continuously displaying 55555 at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
（varies according to use and other factors）
Operating temperature
$0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}-104^{\circ} \mathrm{F}\right)$
Dimensions：$\quad 76 \mathrm{~mm} \times 135 \mathrm{~mm} \times 10 \mathrm{~mm}$
Weight：\quad Approx． 66 g （with batteries）
Accessories：\quad Battery $\times 1$（installed），operation manual and hard case
FOR MORE INFORMATION ABOUT SHARP CALCULATORS VISIT：
http：／／www．sharp－calculators．com

CALCULATION EXAMPLES
［1］

$\sin 60\left[{ }^{\circ}\right]=$	ON／C） $\sin 60 \square$	0.866025403
$\cos \frac{\pi}{4}[\mathrm{rad}]=$	DRG $\cos \square$ \square $=$ \square	0.707106781
$\tan ^{-1} 1=[\mathrm{g}]$	$\begin{aligned} & \text { DRG 2ndF tan-1 } 1 \backsim= \\ & \text { DRG } \end{aligned}$	50.
$\begin{aligned} & (\cosh 1.5+ \\ & \sinh 1.5)^{2}= \end{aligned}$	ON／C 1 hyp $\cos 1.5$ + hyp \sin $1.5 \square$ 2ndF x^{2} $=$	20.08553692
$\tanh ^{-1} \frac{5}{7}=$	$\begin{aligned} & \text { (2ndF) archyp } \tan \square 1 \\ & \div 7 \square 1 \square= \end{aligned}$	0.895879734
In 20＝	2ndF $\ln 20 \square$	2.995732274
$\log 50=$	2ndF $\log 50=$	1.698970004
$\mathrm{e}^{3}=$	2ndF $e^{x} 3 \square$	20.08553692
$10^{1.7}=$	2ndF $10^{x} 1.7 \square$	50.11872336
$\frac{1}{6}+\frac{1}{7}=$	$\begin{aligned} & 6 \text { (2ndF) } x^{-1}+7 \text { 2ndF } \\ & x^{-1}= \end{aligned}$	0.309523809
$8^{-2}-3^{4} \times 5^{2}=$		$-2 ’ 024.984375$
$\left(12^{3}\right)^{\frac{1}{4}}=$		6.447419591
$8^{3}=$	82 2ndF $x^{3}=$	512.
$\sqrt{49}-4 \sqrt{81}=$	$\begin{aligned} & \text { 2ndF } \sqrt{ } \text { 2n } 49 \square 4 \text { 2ndF } \\ & 81 \curvearrowleft \end{aligned}$	\sqrt{x}
$3 \sqrt{27}=$	2ndF $\sqrt[3]{ } 27 \square$	3.
$4!=$	4 2ndF $\mathrm{n!}=$	24.
${ }_{10} \mathrm{P}_{3}=$	10 2ndF $n \mathrm{nr} 3)=$	720.
${ }_{5} \mathrm{C}_{2}=$	5 2ndF $n_{n \mathrm{Cr}} 2 \square$	10.
500＊25\％＝	500×25 2ndF $\%$	125.
120 $\div 400=$ ？\％	$120 \div 400$ 2ndF $\%$	30.
$500+(500 \times 25 \%)=$	500 ± 25 2ndF \％	625.
$\underline{400-(400 \times 30 \%)=}$	$400 \square 30$ 2ndF \％	280.

	$\theta=\sin ^{-1} x, \theta=\tan ^{-1} x$	$\theta=\cos ^{-1} x$
DEG	$-90 \leq \theta \leq 90$	$0 \leq \theta \leq 180$
RAD	$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$	$0 \leq \theta \leq \pi$
GRAD	$-100 \leq \theta \leq 100$	$0 \leq \theta \leq 200$

［3］

$90^{\circ} \rightarrow$［rad］	ON／C 90 2ndF DRG	1.570796327
\rightarrow［g］	2ndF DRG	100.
\rightarrow［ ${ }^{\text {］}}$	2ndF DRG	90
$\sin ^{-1} 0.8=\left[{ }^{\circ}\right]$	2ndF $\mathrm{sin}^{-1} 0.8 \square$	53.13010235
\rightarrow［rad］	2ndF DRG	0.927295218
\rightarrow［g］	2ndF DRG	59.03344706
$\rightarrow\left[{ }^{\circ}\right]$	2ndF DRG	53.13010235

［4］

	ON／C $8 \times X 2$（STOM	16.
$24 \div(8 \times 2)=$	$24 \div$ RCL $\mathrm{M} \leftrightarrows$	1.5
（8×2）$\times 5=$	RCL M X $5 \square$	80.
	ON／C（STO）M	．
\＄150×3：M1	$150 \times 3 \times$	450.
＋）\＄250：M2＝M1＋250	$250{ }^{\text {M }+}$	250.
－）M2×5\％：Discount	RCL M M 5 2ndF $\%$	35.
Total $=$ M	2ndF M－RCL M	665.
\＄1 \ddagger ¥110	110 STO）Y	110.
$¥ 26,510=\$$ ？	$26510 \div$ RCL $Y=$	241.
\＄2，750＝\＃？	$2750 \times$ RCL Y ¢	302＇500．
$\mathrm{r}=3 \mathrm{~cm}$	3 sto r	3.
$\pi \mathrm{r}^{2}=$ ？	π（2ndF（LIPPA）	
	\underline{r} 2ndF $x^{2}=28.2$	27433388

6＋4＝ANS	ON／C $6+4 \square$	10.
ANS +5	$+5 \square$	15.
$44+37=$ ANS	$44 \square 37-$	81.
$\sqrt{\text { ANS }}=$	2ndF $\sqrt{\square}=$	9.

$3 \frac{1}{2}+\frac{4}{3}=\left[a \frac{b}{c}\right]$	ON／C $3-a b / c) 1 a+$
	4 ab／c 3 ＝ 4 「5 $\Gamma^{6}{ }^{\text {＊}}$
$\rightarrow[\mathrm{a} . \mathrm{xxx}]$	ab／c 4．833333333
$\rightarrow[\mathrm{d} / \mathrm{c}]$	2ndF d／c 29 「6
$10^{\frac{2}{3}}=$	$2 \mathrm{2ndF} 10^{x} 2 \mathrm{ab} / \mathrm{c} 3.641588834$
$\left(\frac{2}{3}\right)^{-1}=$	$2 \times$ ab／c 3 2ndF $x^{-1}=1 \Gamma^{1} \Gamma^{2}$
$\sqrt{\frac{4}{9}}=$	2ndF $\sqrt{\square} 4 \mathrm{ab} / \mathrm{c} 9 \square 2 \Gamma 3$
$\frac{2+3}{7}=$	(1) 2 $+$ 3 $a b / c$ 7 $5\ulcorner 7$
$\begin{aligned} & 1.25+\frac{2}{5}=[\mathrm{a} \cdot \mathrm{xxx}] \\ & \rightarrow\left[\mathrm{a} \frac{\mathrm{~b}}{\mathrm{c}}\right] \end{aligned}$	
	＊ $4 \Gamma 5 \Gamma 6=4 \frac{5}{6}$

［7］

$12^{\circ} 39^{\prime} 18.05^{\prime \prime}$	（ON／C） 12 （D＇M＇S 39 D＇M＇S 18.05 D＇M＇S
\rightarrow［10］	2ndF \rightarrow DEG 12.65501389
$\underline{123.678 \rightarrow[60]}$	123.678 2ndF \rightarrow DEG $123^{\circ}{ }^{\circ} 40^{\prime} 40.8^{\prime \prime}$
$3 \mathrm{~h} 30 \mathrm{~m} 45 \mathrm{~s}+$	3 D＇M＇S 30 （D＇M＇S 45 D＇M＇S +6 （D＇M＇S
$6 \mathrm{~h} 45 \mathrm{~m} 36 \mathrm{~s}=$［60 ］	
3h45m－	3 DCM＇S 45 DPM＇S -1.
$1.69 \mathrm{~h}=$［60］	2ndF \rightarrow DEG $2^{\circ} 3^{\prime} 36 . "$
$\sin 62^{\circ} 12^{\prime} 24^{\prime \prime}=[10]$	
	$=0.884635235$

［8］

［9］

$\left[\begin{array}{c} \text { DATA } \\ 95 \end{array}\right]$	2 2dF MODE	0.
95 80	95 （DATA	$n=1$.
80	80 （DATA	$n=2$.
75	（DATA	$n=3$.
75	75 Fral 3 （ DATA	$n=6$.
75	50 （DATA	$n=7$.
50		
$\bar{x}=$	RCL \bar{x}	75.71428571
$\sigma x=$	RCL σ_{x}	12.37179148
$\Sigma x=$	RCL Σx	530.
$\Sigma x^{2}=$	RCL Σx^{2}	41＇200．
$s x=$	RCL Sx	13.3630621
$s x^{2}=$	2ndF $x^{2}=$	178.5714286

［10］

$\bar{x}=\frac{\sum x}{n}$	$\sigma x=\sqrt{\frac{\sum x^{2}-n \bar{x}^{2}}{n}}$
$s x=\sqrt{\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}}$	$\sum x=x_{1}+x_{2}+\cdots+x_{\mathrm{n}}$ $\Sigma x^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{\mathrm{n}}{ }^{2}$

【11】

Function	Dynamic range
$\begin{aligned} & \sin x, \cos x \\ & \tan x \end{aligned}$	$\begin{aligned} \text { DEG：} & \|x\|<10^{10} \\ & (\tan x:\|x\| \neq 90(2 \mathrm{n}-1))^{*} \\ \text { RAD：} & \\ & \|x\|<\frac{\pi}{180} \times 10^{10} \\ & \left(\tan x:\|x\| \neq \frac{\pi}{2}(2 \mathrm{n}-1)\right)^{\star} \\ \text { GRAD：} & \|x\|<\frac{10}{9} \times 10^{10} \\ & \\ & \left(\tan ^{2} x:\|x\| \neq 100(2 \mathrm{n}-1)\right)^{*}\end{aligned}$
$\sin ^{-1} x, \cos ^{-1} x$	$\|x\| \leq 1$
$\tan ^{-1} x, \sqrt[3]{x}$	$\|x\|<10^{100}$
In $x, \log x$	$10^{-99} \leq x<10^{100}$

y^{x}	- $y>0$: $\quad-10^{100}<x \log y<100$ - $y=0: \quad 0<x<10^{100}$ - $y<0$: $\begin{aligned} & y<0: \\ & x=\mathrm{n}\left(0<\|x\|<1: \frac{1}{x}=2 \mathrm{n}-1, x \neq 0\right)^{\star}, \\ & -10^{100}<x \log \|y\|<100 \end{aligned}$
$\sqrt[x]{y}$	$\begin{array}{ll} \text { - } y>0: & -10^{100}<\frac{1}{x} \log y<100(x \neq 0) \\ -y=0: & 0<x<10^{100} \\ -y<0: & x=2 \mathrm{n}-1 \\ & \left(0<\|x\|<1: \frac{1}{x}=\mathrm{n}, x \neq 0\right)^{\star} \\ & -10^{100}<\frac{1}{x} \log \|y\|<100 \end{array}$
e^{x}	$-10^{100}<x \leq 230.2585092$
10^{x}	$-10^{100}<x<100$
$\begin{aligned} & \sinh x, \cosh x, \\ & \tanh x \end{aligned}$	$\|x\| \leq 230.2585092$
$\sinh ^{-1} x$	$\|x\|<10^{50}$
$\cosh ^{-1} x$	$1 \leq x<10^{50}$
$\tanh ^{-1} x$	$\|x\|<1$
x^{2}	$\|x\|<10^{50}$
x^{3}	$\|x\|<2.15443469 \times 10^{33}$
\sqrt{x}	$0 \leq x<10^{100}$
x^{-1}	$\|x\|<10^{100}(x \neq 0)$
n !	$0 \leq \mathrm{n} \leq 69$ *
$n \mathrm{nr}$	$\begin{aligned} & 0 \leq r \leq n \leq 9999999999^{*} \\ & \frac{n!}{(n-r)!}<10^{100} \end{aligned}$
${ }_{n} \mathrm{Cr}$	$\begin{aligned} & 0 \leq r \leq n \leq 9999999999^{*} \\ & 0 \leq r \leq 69 \\ & \frac{n!}{(n-r)!}<10^{100} \end{aligned}$
\leftrightarrow DEG, D ${ }^{\circ}$ 'S	$0^{\circ} 0^{\prime} 0.00001{ }^{\prime \prime} \leq\|x\|<10000^{\circ}$
$x, y \rightarrow r, \theta$	$\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}<10^{100}$
$r, \theta \rightarrow x, y$	$\begin{array}{ll} 0 \leq r<10^{100} \\ \text { DEG: } & \|\theta\|<10^{10} \\ \text { RAD: } & \|\theta\|<\frac{\pi}{180} \times 10^{10} \\ \text { GRAD : } & \|\theta\|<\frac{10}{9} \times 10^{10} \end{array}$
DRG	$\begin{aligned} & \text { DEG } \rightarrow \text { RAD, } \\ & \text { GRAD } \rightarrow \text { DEG: }\|x\|<10^{100} \\ & \text { RAD } \rightarrow \text { GRAD: }\|x\|<\frac{\pi}{2} \times 10^{98} \end{aligned}$
${ }_{n} \mathrm{GCD}_{\mathrm{n}, \mathrm{n}} \mathrm{LCM} \mathrm{m}_{\mathrm{n}}$	$0<n<10^{10}$ *

*n, m, r: integer

Manufactured by:
SHARP CORPORATION
1 Takumi-cho, Sakai-ku, Sakai City, Osaka 590-8522, Japan

For EU only:
Imported into Europe by: MORAVIA Consulting spol. s r.o. Olomoucká 83,62700 Brno, Czech Republic

For UK only:
Imported into UK by:
Belmont H Curope Lid
Belmont House, Station Way, Crawley,
Czech Republic

