ScJENIFC
 CALCULATOR
 OpERATION GUDE

<Write View>

sharp EL-W53	Writeview
囉	
$\xrightarrow{\mathrm{McCl}}$	
SETUPDEL BS	
78	
102	
$0{ }^{\text {a }}$	

CONTENTS

HOW TO OPERATE
Read Before Using
Key layout 2
Reset switch/D isplay pattern 3
D isplay format and decimal setting function 3-4
Exponent display Exp 4
Angular unit DRG ${ }^{\text {DRG }}$ 5
Functions and Key Operations
O N /O FF, entry correction keys ON/ OFF CA \triangle - \rightarrow BS DEL 6
D ata entry keys 7
Random key 8
Modify key 9
Basic arithmetic keys, parentheses 10
Percent 11
Inverse, square, cube, xth power of y, square root, cube root, xth root of y 疗 12
10 to the power of x, common logarithm, logarithm of x to base a $\quad 10 x[\log \underset{\log x}{\log }$ 13
e to the power of x, natural logarithm 14
Factorials 15
Permutations, combinations 16
Time calculation 17
Fractional calculations 18
Memory calculations 19
Last answer memory 20
User-defined functions D1 ~ D4 21
Absolute value 22
Trigonometric functions 23
Arc trigonometric functions 24
Hyperbolic functions 25
Coordinate conversion $\rightarrow r \theta \rightarrow x y\left(x^{\prime}, y\right)$ 26
Binary, pental, octal, decimal, and hexadecimal operations (N -base) -BIN +PEN \rightarrow OCT + DEC + HEX 27
STATISTICS FUNCTIONS
D ata input and correction 28
"AN S" keys for 1-variable statistics 29
Data correction 30-32
"AN S" keys for 2-variable statistics 33

How to Operate

\approx Read B efore Using \approx

This operation guide has been written based on the EL-W 531, EL-W 531G, and EL-W 531H models. Some functions described here are not featured on other models. In addition, key operations and symbols on the display may differ according to the model.

1. KEY LAYOUT

2nd function, ALPHA keys
Pressing these keys will enable the functions written in orange (2nd F) or green (ALPHA) above the calculator buttons.

2nd function

W ritten in orange above the $0 \mathrm{~N} / \mathrm{C}$ key <Power off>

ON/C, OFF key Direct function

- Mode key

This calculator can operate in three different modes as follows.
<Example>
[Normal mode] •Mode $=0$; normal mode
MODE 0
[STAT mode]
 for performing normal arithmetic and function calculations.
-Mode =1; mode for performing 1- or 2 -variable statistical calculations. To select the statistical submode, press the corresponding number key after mooe 1 .
0 (SD): Single variable statistic calculation
1 (LIN E): Linear regression calculation
2 (QUAD): Q uadratic regression calculation
3 (E_EXP): Eular Exponential regression calculation
4 (LO G): Logarithmic regression calculation
5 (PO W ER): Power regression calculation
6 (IN V): Inverse regression calculation
7 (EXP): Exponential regression calculation

2. RESET SWITCH © ${ }_{\text {reset }}$

If the calculator fails to operate normally, press the reset switch on the back to reinitialise the unit. The display format and calculation mode will return to their initial settings.

NOTE:

Pressing the reset switch will erase any data stored in memory.

3. DISPLAY PATTERN

The actual display does not appear like this.
This illustration is for explanatory purposes only.

4. DISPLAY FORMAT AND DECIMAL SETTING FUNCTION

For convenient and easy operation, this model can be used in one of five display modes.
The selected display status is shown in the lower left part of the display (Format Indicator).
N ote: If more 0's (zeros) than needed are displayed when the ON/C key is pressed, check

- Floating decimal point format $1 / 2$ ($\mathrm{N} 1 / \mathrm{N} 2$ is displayed)

Valid values beyond the maximum range are displayed in the form of [10-digit (mantissa) + 2-digit (exponent)]

- Fixed decimal point format (FIX is displayed)

Displays the fractional part of the calculation result according to the specified number of decimal places.

- Scientific notation (SCI is displayed)

Frequently used in science to handle extremely small or large numbers.

- Engineering scientific notation (EN G is displayed)

Convenient for converting between different units.
<Example> Let's compare the display result of [10000 $\div 8.1=$] in each display format.
(specifies normal mode)
N ote: The calculator has two settings for displaying a floating point number: N ORM1 (default setting) and N 0 RM2. In each display setting, a number is automatically displayed in scientific notation outside a preset range:

Initial display

- N O RM1: $0.000000001 \leq x \leq 9999999999$
- NO RM2: $0.01 \leq x \leq 9999999999$

5. EXPONENT DISPLAY

The distance from the earth to the sun is approx. 150,000,000 (1.5×10^{8}) km. Values such as this with many zeros are often used in scientific calculations, but entering the zeros one by one is a great deal of work and it's easy to make mistakes. In such cases, the numerical values are divided into mantissa and exponent portions, displayed and calculated.
<Example> W hat is the number of electrons flowing in a conductor when the electrical charge across a given cross-section is 0.32 coulombs. (The charge on a single electron $=1.6 \times 10^{-19}$ coulombs).
0.32

N	

6. ANGULAR UNIT

Angular values are converted from DEG to RAD to GRAD with each push of the DRG key. This function is used when doing calculations related to trigonometric functions or coordinate geometry conversions.

Degrees (DEG is shown at the top of the display)

A commonly used unit of measure for angles. The angular measure of a circle is expressed as 360°.

Radians (RAD is shown at the top of the display)

Radians are different from degrees and express angles based on the circumference of a circle. 180° is equivalent to π radians. Therefore, the angular measure of a circle is 2π radians.

Grads (GRAD is shown at the top of the display)

Grads are a unit of angular measure used in Europe, particularly in France. An angle of 90 degrees is equivalent to 100 grads.

The relationships between the three types of angular units can be expressed as right:

<Example> C heck to confirm 90 degrees equalling $\pi / 2$ radians equalling 100 grads. ($\pi=3.14159$...)

Operation

Display

\approx Functions and Key Operations \approx

ON/OFF, Entry Correction Keys

on/c Turns the calculator on or clears the data. It also clears the contents of the 3 -variable linear equations and statistics, as well as values stored in the independent memory in normal mode, are not erased.

OFF Turns the calculator off.

CA Clears all internal values, including the last answer (ANS) and statistics. Values stored in memory in normal mode are not erased.

4 $\sqrt{7}$
These arrow keys are useful for Multi-Line playback, which lets you scroll through calculation steps one by one.

BS DEL
\qquad
These keys are useful for editing equations. The \square key moves the cursor to the left, and the \triangle key moves the cursor to the right.
The bsey deletes the symbol/number at the left of the cursor, and the ${ }^{\text {DEL }}$ key deletes the symbol/number at the cursor.

0 to 9 Numeric keys for entering data values.

Decimal point key. Enters a decimal point.

$\underset{t_{\text {nead }}}{(-)}$
Enters the minus symbol.
The subtraction key \square is not used for entering negative numbers.
π
Pressing π automatically enters the value for π (3.14159...).
The constant π, used frequently in function calculations, is the ratio of the circumference of a circle to its diameter.

Exp Pressing this key switches to scientific notation data entry.
<Example> Provided the earth is moving around the sun in a circular orbit, how many kilometers will it travel in a year?

* The average distance between the earth and the sun being $1.496 \times 10^{8} \mathrm{~km}$.

Circumference equals diameter $x \pi$; therefore, $1.496 \times 10^{8} \times 2 \times \pi$

Operation

Display

Random Key

RANDOM Generates random numbers.
Random numbers are three-decimal-place values between 0.000 and 0.999 . U sing this function enables the user to obtain unbiased sampling data derived from random values generated by the calculator. (U sing line mode is preferable since in W -View mode, the numbers are generated by fractions.)
<Example>
2ndF
RANDOM

O. $* * *$
(A random number is generated.)

[Random Dice]

To simulate a die-rolling, a random integer between 1 and 6 can be generated by pressing 2 2ndf 1 anvom 1 . To generate the next random dice number, press Geme

[Random Coin]

To simulate a coin flip, 0 (heads) or 1 (tails) can be randomly generated by pressing 2ndF 2 Ranoom 2 . To generate the next random coin number, press $\overbrace{\text { manal }}$.

[Random Integer]

An integer between 0 and 99 can be generated randomly by pressing 2ndF ranoom 3 . To generate the next random integer, press $\underset{\text { Emencer }}{ }$.


```
| Building sample sets for statistics or research.
```

MDF Function to round calculation results.
Even after setting the number of decimal places on the display, the calculator performs calculations using a larger number of decimal places than that which appears on the display. By using this function, internal calculations will be performed using only the displayed value.
<Example> FIX mode TAB = 1 (normal calculation)

0.6 (internally, $0.5555 \ldots$...)

Rounded calculation (MDF)
$5 \div \mathbf{9} \quad=0.6$ (internally, $0.5555 \ldots$)
(In W -View mode, press to show the answer in decimal.)
2ndF MDF (internally, 0.6)

「 APPLICATIONS:
I Frequently used in scientific and technical fields, as well as business,
I when performing chained calculations.
\square
The four basic operators. Each is used in the same way as a standard calculator:

+ (addition), - (subtraction), x (multiplication), and \div (division).

二
(1)
U sed to specify calculations in which certain operations have precedence. You can make addition and subtraction operations have precedence over multiplication and division by enclosing them in parentheses.
\% For calculating percentages. Four methods of calculating percentages are presented as follows.

1) $\$ 125$ increased by $10 \% . .137 .5$

2) $\$ 125$ reduced by $20 \% . .100$

N1
फल:
3) 15% of $\$ 125 . .18 .75$

4) When $\$ 125$ equals 5% of X, X equals... 2500

Inverse, Square, Cube, xth Power of y,Square Root,

$\boldsymbol{x}^{\boldsymbol{- 1}}$ Calculates the inverse of the value on the display.
$\boldsymbol{x}^{\mathbf{2}}$ Squares the value on the display.
$x^{3} \quad$ Cubes the value on the display.
$\boldsymbol{y} \boldsymbol{x} \quad$ C alculates exponential values.

Calculates the square root of the value on the display.
$3 \sqrt{ }$ C alculates the cube root of the value on the display.

$x \sqrt{ }$

 Calculates the $x^{\text {th }}$ root of y.<Example>

10 to the Power of x, Common Logarithm,

$1 \mathbf{0}^{\boldsymbol{x}}$ Calculates the value of 10 raised to the $x^{\text {th }}$ power.
log Calculates the logarithm, the exponent of the power to which 10 must be raised to equal the given value.
$\log _{2} x \quad$ Calculates the logarithm of x to power a.
<Example>

Operation

Display
$2 \mathrm{ndF}{ }^{10^{x}} 3 \square$

$\log 1000=$

e to the Power of x , Natural Logarithm

$\boldsymbol{e}^{\boldsymbol{x}} \quad$ C alculates powers based on the constant e (2.718281828).
In Computes the value of the natural logarithm, the exponent of the power to which e must be raised to equal the given value.
<Example>

Operation

Display

$10=$

MH:

N1 2.505E50es

Factorials $\stackrel{n}{ }$

$\boldsymbol{n}!\quad$ The product of a given positive integer n multiplied by all the lesser positive integers from 1 to $n-1$ is indicated by n ! and called the factorial of n.

<Example>

Operation

Display

c.f
$n!=1 \times 2 \times 3 \times \ldots \times n$

I APPLICATIONS:

I Used in statistics and mathematics. In statistics, this function is used I in calculations involving combinations and permutations.

Permutations, Combinations $\stackrel{n \mathrm{Pr}}{\stackrel{n c}{ }{ }^{-} \text {r }}$

$\boldsymbol{n P r} \quad$ This function finds the number of different possible orderings in selecting r objects from a set of n objects. For example, there are six different ways of ordering the letters $A B C$ in groups of three letters- $A B C, A C B$, $B A C, B C A, C A B$, and CBA.
The calculation equation is ${ }_{3} \mathrm{P}_{3}=3 \times 2 \times 1=6$ (ways).
$n \mathbf{C r}$ This function finds the number of ways of selecting r objects from a set of n objects. For example, from the three letters ABC, there are three ways we can extract groups of two different letters-AB, AC, and CB.
The calculation equation is ${ }_{3} \mathrm{C}_{2}$.
<Example>

Operation

Display

-APPLICATIONS:

Used in statistics (probability calculations) and in simulation hypotheses I in fields such as medicine, pharmaceutics, and physics. Also, can be used to determine the chances of winning in lotteries.

C onverts a sexagesimal value displayed in degrees, minutes, seconds to decimal notation. Also, converts a decimal value to sexagesimal notataion (degrees, minutes, seconds).

Inputs values in sexagesimal notation (degrees, minutes, seconds).
<Example> Convert $24^{\circ} 28^{\prime} 35^{\prime \prime}$ (24 degrees, 28 minutes, 35 seconds) to decimal notation. Then convert 24.476° to sexagesimal notation.

Operation
 Display

24 Doms 28 DoMS 35

Convert to decimal notation

Repeat last key operation to return to the previous display.

Fractional Calculations
 a / b
 $a b / c$

a/b Inputs proper or improper fractions which consist of a numerator and denominator.
$\mathbf{a b} / \mathbf{c} \quad$ Inputs a mixed fraction.
<Example> Add $3 \frac{1}{2}$ and $\frac{5}{7}$, and convert to decimal notation.

APPLICATIONS:

There is a wide variety of applications for this function because
fractions are such a basic part of mathematics. This function is useful for calculations involving electrical circuit resistance.

STO RCL $\mathrm{M}+\mathrm{M}^{-}$ Memory Calculations $A \sim \dot{F}$ X V

STO Stores displayed values in memories $A \sim F, X, Y, M$.
RCL Recalls values stored in $A \sim F, X, Y, M$.
$\mathbf{M +}$ Adds the displayed value to the value in the independent memory M.
$\mathbf{M}^{-} \quad$ Subtracts the displayed value from the value in the independent memory M .
$\mathbf{A} \sim \sim^{\mathbf{F} \quad \mathbf{X} \quad \text { Temporary memories }}$
M Independent memory
<Example 1>

<Example 2>

Calculates $\$ \not \approx \neq$ at the designated exchange rate.
$\$ 1=¥ 110$
$¥ 26,510=\$$?
$\$ 2,750=¥$?
Operation
$110 \leftrightarrows$ STO Y

26510

$2750 \times R \quad Y=$

Last Answer Memory ans

ANS Automatically recalls the last answer calculated by pressing $=$
<Example> Solve for x first and then solve for y using x .

$$
\mathbf{x}=\sqrt{\mathbf{2}}+\mathbf{3} \text { and } \mathbf{y}=\mathbf{4} \div \mathbf{x}
$$

User-Defined Functions $\mathrm{DT} 1 \sim$ D

D1 ~D4 Recall a function that was defined by the user.
<Example>

| APPLICATIONS:

Functions that you have previously defined, including those using
I common 2nd Function buttons, can be stored in D1~D4 for
I later use, thus saving time on keystrokes.

Absolute Value ${ }^{\text {ass }}$

abs Returns an absolute value.
<Example> Operation

Display

Trigonometric Functions

Trigonometric functions determine the ratio of three sides of a right triangle. The combinations of the three sides are sin, cos, and tan. Their relations are:

\sin
 Calculates the sine of an angle. $\quad \boldsymbol{\operatorname { s i n }} \theta=\frac{\mathbf{b}}{\mathbf{a}}$

cos
C alculates the cosine of an angle. $\quad \boldsymbol{\operatorname { c o s }} \theta=\frac{\mathbf{c}}{\mathbf{a}}$
C alculates the tangent of an angle. $\boldsymbol{\operatorname { t a n }} \theta=\frac{\mathbf{b}}{\mathbf{c}}$

<Example>

The angle from a point 15 meters from a building to the highest floor of the building is 45°. How tall is the building?
[DEG mode]
Operation

APPLICATIONS:

Trigonometric functions are useful in mathematics and various engineering calculations. They are often used in astronomical observations, civil engineering and in calculations involving electrical circuits, as well as in calculations for physics such as parabolic motion and wave motion.

Arc trigonometric functions, the inverse of trigonometric functions, are used to determine an angle from ratios of a right triangle. The combinations of the three sides are $\mathrm{sin}^{-1}, \cos ^{-1}$, and tan^{-1}. Their relations are;

$\boldsymbol{s i n}^{-1} \quad$ (arc sine) Determines an angle based on the ratio b/a of two sides of a right triangle.
$\theta=\sin ^{-1} \frac{\mathbf{b}}{\mathbf{a}}$
$\boldsymbol{c o s}^{-1}$ (arc cosine) Determines an angle based on the ratio c/a for two sides of a right triangle.
$\theta=\cos ^{1} \frac{c}{a}$
\square
-
$\boldsymbol{\operatorname { t a n }}^{-1}$ (arc tangent) D etermines an angle based on the ratio b / c for two sides of a right triangle.
$\theta=\tan ^{1} \frac{\mathbf{b}}{\mathbf{c}}$

<Example>

At what angle should an airplane climb in order to climb 80 meters in 100 meters?

[DEG mode]

Hyperbolic Functions

The hyperbolic function is defined by using natural exponents in trigonometric functions.
arc hyp Arc hyperbolic functions are defined by using natural logarithms in trigonometric functions.

「 APPLICATIONS:
I Hyperbolic and arc hyperbolic functions are very useful in electrical I engineering and physics.

Coordinate Conversion $+\operatorname{rr}_{\square}^{x y}$

$\rightarrow r \theta$ Converts rectangular coordinates to polar coordinates $(\mathrm{x}, \mathrm{y} \rightarrow \mathrm{r}, \theta)$
$\rightarrow \boldsymbol{x y}$ Converts polar coordinates to rectangular coordinates $(r, \theta \rightarrow x, y)$
(x, y)
Splits data used for dual-variable data input.

<Example> D etermine the polar coordinates (r, θ) when the rectangular coordinates of Point P are $(x=7, y=3)$.
[DEG mode]

Operation

Display

$7.6 \underset{(x, y)}{ } 23.2 \rightarrow 2 \mathrm{ndF} \xrightarrow{\square}$

APPLICATIONS:

I Coordinate conversion is often used in mathematics and engineering, espe-
I cially for impedance calculations in electronics and electrical engineering.

Binary, Pental, Octal,
 Decimal, and Hexadecimal $\stackrel{\text { BIN }}{\text { PREN }}$ POCT Operations (N -Base)

This calculator can perform conversions between numbers expressed in binary, pental, octal, decimal, and hexadecimal systems. It can also perform the four basic arithmetic operations, calculations with parentheses and memory calculations using binary, pental, octal, decimal, and hexadecimal numbers. In addition, the calculator can carry out the logical operations AND, OR, NOT, NEG, XOR, and XNOR on binary, pental, octal, and hexadecimal numbers.
\rightarrow BIN Converts to the binary system. \rightarrow HEX Converts to the hexadecimal system.
\longrightarrow "BIN " appears.
\rightarrow PEN Converts to the pental system.
\longrightarrow "PEN " appears.
\rightarrow OCT Converts to the octal system.
\longrightarrow "HEX" appears.
\rightarrow DEC C onverts to the decimal system.
\longrightarrow "BIN ", "PEN", "OCT", and "HEX" disappear from the display.

- OCT appears.

Conversion is performed on the displayed value when these keys are pressed.

<Example 2> 1011 AND $101=(\mathrm{BIN}) \rightarrow$ DEC
Operation
Display

Statistics Functions

The statistics function is excellent for analyzing qualities of an event. Though primarily used for engineering and mathematics, the function is also applied to nearly all other fields including economics and medicine.

DATA INPUT AND CORRECTION

DATA Enters data for statistical calculations.

CD C lears data input.

$(\boldsymbol{x}, \boldsymbol{y})$ Splits data used for dual-variable data input.
 (U sed for dual-variable statistical calculations.)

<Example 1> Here is a table of examination results. Input this data for analysis.

Data table 1

No.	1	2	3	4	5	6	7	8
Score	30	40	50	60	70	80	90	100
No. of pupils	2	4	5	7	12	10	8	2

"ANS" KEYS FOR 1-VARIABLE STATISTICS

$\overline{\boldsymbol{x}} \quad$ Calculates the average value of the data (sample data x).
$\boldsymbol{S X} \quad$ C alculates the standard deviation for the data (sample data x).
$\boldsymbol{\sigma} \boldsymbol{x} \quad$ C alculates the standard deviation of a data population (sample data x).
n Displays the number of input data (sample data x).
$\boldsymbol{\Sigma \boldsymbol { x }} \quad$ C alculates the sum of the data (sample data x).
$\boldsymbol{\Sigma} \boldsymbol{x}^{2}$ Calculates the sum of the data (sample data x) raised to the second power.

NOTE:

1. Sample data refers to data selected randomly from the population.
2. Standard deviation of samples is determined by the sample data shift from an average value.
3. Standard deviation for the population is standard deviation when the sample data is deemed a population (full data).

Let's check the results based on the previous data.
RCL $\overline{\boldsymbol{x}} \quad 69$ (average value)
RCL $\quad \boldsymbol{S X} \quad 17.75686128$ (standard deviation)
RCL $\quad \sigma x \quad 17.57839583$ (standard deviation of the population)
RCL $\quad 50$ (total count of data)
RCL $\boldsymbol{\sum X} 3450$ (total)

DATA CORRECTION

Correction prior to pressing ${ }^{\text {data }}$ immediately after a data entry: Delete incorrect data with owch, then enter the correct data.

Correction after pressing $\stackrel{\text { data }}{ }$:
Use $\triangle \square$ to display the data previously entered.
Press ∇ to display data items in ascending (oldest first) order. To reverse the display order to descending (latest first), press the Δ key.
Each item is displayed with ' $\mathrm{X}:$:' ' $Y:$:', or ' $\mathrm{F}:$ ' (n is the sequential number of the data set).
Display the data item to modify, input the correct value, then press dara. U sing (x, y), you can correct the values of the data set all at once.

- W hen $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ appears, more data items can be browsed by pressing
Δ or ∇.
- To delete a data set, display an item of the data set to delete, then press $\sqrt{2 n d F} \subset$. The data set will be deleted.
- To add a new data set, press on/c and input the values, then press dara.

<Example 2>

Data table 2

Operation

MODE

Select single-variable statistics mode

$$
30 \stackrel{\text { DATA }}{\stackrel{1}{2}}
$$

Display

<Example 3> The table below summarizes the dates in April when cherry blossoms bloom, and the average temperature for March in that same area. D etermine basic statistical quantities for data X and data Y based on the data table.

Data table 3

	Year	1998	1999	2000	2001	2002	2003	2004	2005
\mathbf{x}	Average temperature	6.2	7.0	6.8	8.7	7.9	6.5	6.1	8.2
y	Date blossoms bloom	13	9	11	5	7	12	15	7

	Operat
MODE	1

Display


```
Gtat ica LIME]
```

Select dual-variable statistics mode and linear regression calculation in sub-mode.
$6.2\left(x^{\prime}, y\right) 13 \stackrel{\text { DATA }}{ }$
-
.
"DATA ©ET=
$6.1\left(x^{\prime}, y\right) 15 \stackrel{\text { DATA }}{\square}$

$8.2(x, y) 7$ DATA

घ. $\mathrm{m}_{\mathrm{DEG}}^{\mathrm{DE}} \mathrm{m}$

गीः $=$ घ.

"ANS" KEYS FOR 2-VARIABLE STATISTICS

In addition to the 1-variable statistic keys, the following keys have been added for calculating 2 -variable statistics.
$\boldsymbol{\Sigma x y} \quad$ Calculates the sum of the product for sample data x and sample data y .
$\boldsymbol{\Sigma y} \quad$ Calculates the sum of the data (sample data y).
$\boldsymbol{\Sigma} \boldsymbol{y}^{\mathbf{2}}$ Calculates the sum of the data (sample data y) raised to the second power.
$\overline{\boldsymbol{y}} \quad$ C alculates the average value of the data (sample data y).
$\boldsymbol{s y} \quad$ C alculates the standard deviation for the data (sample data y).
$\boldsymbol{\sigma} \boldsymbol{y} \quad$ C alculates the standard deviation of a data population (sample data y).

NOTE:

The codes for basic statistical quantities of sample data x and their meanings are the same as those for single-variable statistical calculations.
Let' s check the results based on the previous data.

RCL \bar{x}	7.175	(A verage for data x)
RCL $\quad \mathrm{Sx}$	0.973579551	(Standard deviation for data x)
$\mathrm{RCL} \quad \sigma x$	0.91070028	(Standard deviation of the population for data x)
RCL	9.875	(A verage for data y)
RCL ${ }^{\text {sy }}$	3.440826313	(Standard deviation for data y)
RCL ${ }^{\sigma y}$	3.218598297	(Standard deviation of the population for data y)
RCL n	8	(Total count of data)
RCL $\sum x$	57.4	(Sum of data x)
RCL \sum^{\square}	418.48	(Sum of data x raised to the second power)
RCL ${ }^{\Sigma x y}$	544.1	(Sum of the product of data x and data y)
$R C L \quad \Sigma y$	79	(Sum of data y)
$\text { RCL } \sum^{\Sigma y^{2}}$	863	(Sum of data y raised to the second power)

