Information on the Disposal of This Equipment and Its Batteries

1. In the European Union
Used electrical and electronic equipment and batteries must be collected and treated separately in accordance with local law. This ensures an environmentally friendly treatment, prevents recycling of materials, and minimizes the disposal of waste. Each household should participate. It is illegal to dispose of waste in a manner that is harmful to human health and the environment due to harmful substances. This symbol appears on the electrical and electronic equipment and batteries (or the packaging) to remind you of this. "Y" or "YB" appears below it. This means that the battery contains traces of mercury (Hg) or lead (Pb), respectively.

Take USED EQUIPMENT to a local, usual, municipal collection facility, where available. Before that, remove batteries. Take USED BATTERIES to a battery collection facility, usually a place where new batteries are sold. Ask there for a collection form for used batteries. If in doubt, contact your dealer or local authorities and ask for the correct method of disposal.

2. In other countries outside the EU
If you wish to discard the product, please contact your local authorities and ask for the correct method of disposal.

For Australia / New Zealand only:
For warranty information please see www.sharp.net.au
Introduction

This graphing calculator can handle many types of mathematical formulas and expressions for you. It is powerful enough to process very complex formulas used in rocket science, but yet so compact that it fits in your coat pocket. The main features of this graphing calculator are as follows:

• Graphing Capability to help you visualize what you are working on,

• Slide Show Function to help you understand common formulas, prepare for presentations,

• Large memory capacity, with fast processing speed, and more.

We strongly recommend you read this manual thoroughly. If not, then browse through the very first chapter “Getting Started”, at least. Last, but not least, congratulations on purchasing the Graphing Calculator!

NOTICE

• The material in this manual is supplied without representation or warranty of any kind. SHARP assumes no responsibility and shall have no liability of any kind, consequential or otherwise, from the use of this material.

• SHARP strongly recommends that separate permanent written records be kept of all important data. Data may be lost or altered in virtually any electronic memory product under certain circumstances. Therefore, SHARP assumes no responsibility for data lost or otherwise rendered unusable whether as a result of improper use, repairs, defects, battery replacement, use after the specified battery life has expired, or any other cause.

• SHARP assumes no responsibility, directly or indirectly, for financial losses or claims from third persons resulting from the use of this product and any of its functions, the loss of or alteration of stored data, etc.

• The information provided in this manual is subject to change without notice.

• Screens and keys shown in this manual may differ from the actual ones on the calculator.

• Some of the accessories and optional parts described in this manual may not be available at the time you purchase this product.

• All company and/or product names are trademarks and/or registered trademarks of their respective holders.
Contents

Caring for Your Calculator ... 7

Chapter 1
Getting Started .. 8
Before Use .. 8
Using the Hard Cover .. 10
Part Names and Functions ... 11
 Main Unit .. 11
Basic Key Operations ... 15
Quick Run-through .. 16

Chapter 2
Operating the Graphing Calculator ... 18
Basic Key Operations - Standard Calculation Keys ... 18
 1. Entering numbers ... 18
 2. Performing standard math calculations .. 20
Cursor Basics ... 20
Editing Entries ... 22
Second Function Key ... 23
ALPHA Key ... 24
Math Function Keys ... 25
MATH, STAT, and PRGM Menu Keys ... 27
SETUP Menu .. 28
SETUP Menu Items ... 29
Calculations Using MATH Menu Items ... 32
Precedence of Calculations ... 45
Error Messages ... 46
Resetting the Calculator ... 47
 1. Using the reset switch .. 47
 2. Selecting the RESET within the OPTION menu ... 48

Chapter 3
Manual Calculations ... 49
1. Try it! ... 49
2. Try it! ... 51
3. Arithmetic Keys ... 52
4. Calculations Using Various Function Keys .. 54
5. More Variables: Single Value Variables and LIST Variables 65
6. TOOL Menu ... 65
Chapter 4
Graphing Features

1. Try it! .. 68
2. Try it! .. 71
3. Explanations of Various Graphing Keys... 74
4. Graph Modes ... 79
5. Graphing Parametric Equations ... 80
6. Polar Graphing ... 81
7. Graphing Sequences ... 82
8. The CALC Function ... 86
9. Format Setting ... 90
10. Setting a Window ... 92
11. Tables ... 93
12. Other Useful Graphing Features .. 111
 Split screen.. 111
 Substitution feature.. 113

Chapter 5
SLIDE SHOW Feature

1. Try it! .. 116
2. The SLIDE SHOW menu ... 119

Chapter 6
Matrix Features

1. Try it! .. 121
2. Entering and Viewing a Matrix
 Editing keys and functions ... 124
3. Normal Matrix Operations .. 125
4. Special Matrix Operations
 Calculations using OPE menus .. 126
 Calculations using MATH menus ... 130
 Use of [] menus .. 131
Chapter 7
List Features ... 132
1. Try it! .. 132
2. Creating a list ... 134
3. Normal List Operations ... 134
4. Special List Operations .. 136
 - Calculations using the OPE menu functions 136
 - Calculations using MATH Menus 140
 - Calculations using VECTOR Menus 143
5. Drawing multiple graphs using the list function 144
6. Using L_DATA functions ... 144
7. Using List Table to Enter or Edit Lists 145
 - How to enter the list .. 145
 - How to edit the list .. 146

Chapter 8
Statistics & Regression Calculations 147
1. Try it! .. 147
2. Statistics Features ... 151
 1. STAT menus .. 151
 2. Statistical evaluations available under the C CALC menu 152
3. Graphing the statistical data ... 155
 1. Graph Types ... 155
 2. Specifying statistical graph and graph functions 159
 3. Statistical plotting on/off function 159
 4. Trace function of statistical graphs 160
4. Data list operations ... 161
5. Regression Calculations ... 162
6. Statistical Hypothesis Testing 167
7. Distribution functions ... 179

Chapter 9
Financial Features .. 185
1. Try it! 1 .. 185
2. Try it! 2 .. 189
3. CALC functions ... 191
4. VARS Menu ... 195
Chapter 10
The SOLVER Feature ... 196
1. Three Analysis Methods: Equation, Newton & bisection, and Graphic 196
2. Saving/Renaming Equations for Later Use .. 202
3. Recalling a Previously Saved Equation .. 203
 Functions of the SOLVER feature .. 203

Chapter 11
Programming Features ... 204
1. Try it! ... 204
2. Programming Hints ... 206
3. Variables .. 207
 Setting a variable .. 207
 Index of variables in the programs .. 207
4. Operands ... 207
 Comparison operands ... 207
5. Programming commands ... 208
 A PRGM menu (PRGM) A ... 208
 B BRNCH menu (PRGM) B ... 209
 C SCRN menu (PRGM) C .. 210
 D I/O menu (PRGM) D ... 210
 E SETUP menu (PRGM) E ... 210
 F FORMAT menu (PRGM) F ... 212
 G S_PLOT menu (PRGM) G .. 213
6. Flow control tools .. 214
7. Other menus convenient for programming ... 216
 H COPY menu (PRGM) H ... 216
 VARS menu ... 217
8. Debugging ... 219
9. Preinstalled program ... 220
 Calculating the area between equations for a given interval 220

Chapter 12
OPTION Menu .. 222
Accessing the OPTION Menu ... 222
1. Adjusting the screen contrast .. 222
2. Checking the memory usage .. 222
3. Deleting files ... 224
4. Linking to another EL-9950 or PC .. 224
5. Reset function ... 227
Appendix
1. Replacing Batteries... 228
2. Troubleshooting Guide ... 231
3. Specifications .. 233
4. Error Codes and Error Messages .. 235
5. Error Conditions Relating to Specific Tasks 237
 1. Financial .. 237
 2. Error conditions during financial calculations 239
 3. Distribution function ... 239
6. Calculation Range ... 241
 1. Arithmetic calculation .. 241
 2. Function calculation .. 241
 3. Complex number calculation ... 246
7. List of Menu/Sub-menu Items ... 247
Caring for Your Calculator

• Do not carry the calculator around in your back pocket, as it may break when you sit down. The display is made of glass and is particularly fragile.

• Keep the calculator away from extreme heat such as on a car dashboard or near a heater, and avoid exposing it to excessively humid or dusty environments.

• Since this product is not waterproof, do not use it or store it where fluids, for example water, can splash onto it. Raindrops, water spray, juice, coffee, steam, perspiration, etc. will also cause malfunction.

• Clean with a soft, dry cloth. Do not use solvents.
 Avoid using a rough cloth or anything else that may cause scratches.

• Do not use a sharp pointed object or exert too much force when pressing keys.

• Avoid excessive physical stress.
Chapter 1
Getting Started

Before Use

Inserting batteries - resetting the memory

1. Open the battery cover located on the back of the calculator. Pull down the notch, then lift the battery cover up to remove it.

2. Insert the batteries, as indicated. Make sure that the batteries are inserted in the correct directions.

3. Pull off the insulation sheet from the memory backup battery.

4. Place the battery cover back, and make sure that the notch is snapped on.

5. After a few seconds, press \[ON\] and you will see the following message on the display:

 PRESS [CL] KEY TO CLEAR ALL DATA
 PRESS [ON] KEY TO CANCEL

6. Make sure to press \[CL\] to reset the calculator’s memory. The memory will be initialized and “ALL DATA CLEARED” will be displayed. Press any key to set the calculator ready for normal calculation mode.
Chapter 1: Getting Started

Note: If the above message does not appear or malfunction occurs, check the direction of the batteries and close the cover again. If this does not solve the problem, remove the battery cover, and then gently push the RESET switch with the tip of a ball-point pen or a similar object while pressing \text{ON} simultaneously. And then, follow steps 4 to 6 above.

\textbf{DO NOT} use a tip of a pencil or mechanical pencil, a broken lead may cause a damage to the button mechanism.

\textbf{Adjusting display contrast}

Since the display contrast may vary with the ambient temperature and/or remaining battery power, you may want to adjust the contrast accordingly. Here’s how:

1. Press \text{2ndF}, then \text{OPTION}.

2. Adjust the contrast by using the \text{+} and \text{-} keys.

 \text{+}: increases the contrast

 \text{-}: decreases the contrast

 \text{Hold down the key.}

3. When done, press \text{CL} to exit the mode.

\textbf{Turning the calculator OFF}

Press \text{2ndF OFF} to turn the calculator off.

\textbf{Automatic power off function}

- The calculator is automatically turned off when there is no key operation for approximately 10 minutes (The power-off time depends on the conditions.)

- The calculator will not automatically power off while it is executing calculations ("\text{I}" flashes on the upper right corner of the display.)
Chapter 1: Getting Started

Using the Hard Cover

To open the cover:

When in use:

When not in use:
Part Names and Functions

Main Unit

1. Display screen
2. Power ON/OFF key
3. Key operation keys
4. Graphing keys
5. Cursor keys
Chapter 1: Getting Started

1. **Display screen:**
 Displays up to 132 pixels wide by 64 pixels tall of graphs and texts.

2. **Power ON/OFF key:**
 Turns calculator ON. To turn off the calculator, press 2ndF, then OFF.

3. **Key operation keys:**
 These keys are used to change the key functions.
 - 2ndF: Changes the cursor to “2”, and the next keystroke enters the function or mode printed above each key in orange.
 - ALPHA: Changes the cursor to “A”, and the next keystroke enters the alphabetical letter printed above each key in green.
 - Note: Press 2ndF A-LOCK to lock the specific keys in the alphabet entering mode. (ALPHA-LOCK)

4. **Graphing keys:**
 These keys specify settings for the graphing-related mode.
 - Y= : Opens the formula input screen for drawing graphs.
 - GRAPH: Draws a graph based on the formulas programmed in the Y= window.
 - TABLE: Opens a Table based on the formulas programmed in Y=.
 - WINDOW: Sets the display ranges for the graph screen.
 - ZOOM: Changes the display range of the graph screen.
 - TRACE: Places the cursor pointer on the graph for tracing, and displays the coordinates.
 - SUB: Displays the substitution feature.
 - SPLIT: Displays both a graph and a table at the same time.
 - TABLSET: Opens the table setup screen.
 - DRAW: Draws items on the graph. Use this key also to save or recall the graph/pixel data.
 - FORMAT: Sets the operations of the graph screen.
 - CALC: Calculates specific values based on formulas programmed in Y=.
Cursor keys:
Enables you to move the cursor (appears as _, □, etc. on the screen) in four directions. Use these keys also to select items in the menu.

Reset switch (in the battery compartment):
Used when replacing batteries or clear the calculator memory.

key: Returns calculator to calculation screen.
OPTION key: Sets or resets the calculator settings, such as LCD contrast and memory usage.
CLIP key: Obtains the screen for the slide show.
LIST key: Accesses list features.
SLIDE SHOW key: Creates your own slide shows.
STAT PLOT key: Sets the statistical plotting.

Keyboard

Basic Operation keys

ENTER: Used when executing calculations or specifying commands.
CL / QUIT: Clear/Quit key
BS: Backspace delete key
DEL: Delete key
INS: Toggle input mode between insert and overwrite (in one-line edit mode).
SETUP: Allows you to set up the basic behavior of this calculator, such as to set answers in scientific or normal notation.
Chapter 1: Getting Started

Menu keys

[MATH]: Enter the Math menu with additional mathematical functions.
[STAT]: Enter the statistics menu.
[PRGM]: Enter the programming menu.
[TOOL]: Converts hexadecimal, decimal, octal and binary numbers or solves systems of linear equations, finds roots for quadratic and cubic equations.

[MATRIX]: Enter menu for matrix functions.
[SOLVER]: Enter screen and menu for Solver features.
[VARS]: Enter the menu for calculator specific variables.
[FINANCE]: Enter menu for financial solver and functions.

Scientific Calculation keys

See each chapter for details.
Basic Key Operations

Since this calculator has more than one function assigned to each key, you will need to follow a few steps to get the function you need.

Example

- Press "as is" to get the function and number printed on each key.
- To access secondary function printed above each key in orange, press \(\text{2ndF} \) first, then press the key. Press \(\text{CL} \) to cancel.
- To press the key printed above each key in green, press \(\text{ALPHA} \) first, then press the key. When in Menu selection screen however, you do not have to press \(\text{ALPHA} \) to access the characters. Press \(\text{CL} \) to cancel.
- If you want enter alphabetical letters (green) sequentially, use \(\text{2ndF} \). Press \(\text{ALPHA} \) to return to the normal mode.
- In this manual, alphanumeric characters to be entered are indicated as they are (without using the key symbols). Use of the key symbol indicates that it is for selecting the menu specified by the character or number. The above example also indicates the key notation rules of this manual.
Chapter 1: Getting Started

Quick Run-through

Here are the major ingredients for 18 doughnuts:

- \(\frac{1}{4} \) cup warm water
- \(\frac{3}{4} \) cup warm milk
- \(\frac{1}{3} \) cup sugar
- 4 cups all-purpose flour
- 2 eggs
- 3 tablespoons butter

Based on these values, solve the following problems using the calculator.

Question If you make 60 doughnuts according to the above recipe, how many cups of warm milk are required?

At first, you may calculate how many cups of warm milk are required for 1 doughnut = \(\frac{\frac{3}{4}}{18} \)

As for the ordinary calculator, the answer is 0.041666666. But how much is 0.04166666 of a cup of warm milk?

Set up the calculator before calculation

1. Press \(\text{#} \) to enter the calculation screen.
2. Press \(\text{C} \) to clear the display.

Change answer mode from decimals to fractions

1. Press \(\text{2ndF SETUP} \).
2. Select \(\text{F ANSWER} \) and press \(2 \).

Press \(\text{CL} \).
Enter fractions

3. Press $\frac{\frac{3}{4}}{\frac{18}{24}}$.

4. Press $\frac{\frac{3}{4}}{18}$.

5. Press [ENTER].

Now we have found $\frac{1}{24}$ of a cup of warm milk is required per one doughnut, how many cups are required for 60 doughnuts?

If you want to use the answer of the previous calculation, press [ANS] and you do not have to reenter the value.

6. Press [2ndF] [ANS] [×], or directly [×] (multiplication).

“Ans×” is displayed. ANS is a calculator specific variable which indicates the answer of calculations just before.

* When you enter + (addition), – (subtraction), × (multiplication), ÷ (division), it is not required to press [ANS].

7. Press 60.

8. Press [ENTER].

Answer: $2\frac{1}{2}$ cups of warm milk are required for making 60 doughnuts.
Chapter 2
Operating the Graphing Calculator

Basic Key Operations - Standard Calculation Keys

The standard calculation keys, located at the bottom four rows of the keyboard, enable you to access the basic functions of the calculator.

1. Entering numbers

Use the number keys (0 - 9), decimal point key (.), and negative number key (−) to enter numbers into the calculator. To clear the screen entry, press CL.

In the examples and descriptions in this manual, a point is used to provide a Display decimal point to coincide with the display of the computer.

Number entry

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 10.23456789 onto the Calculation screen.</td>
</tr>
<tr>
<td>1. Enter the Calculation screen, then clear the screen entry:</td>
</tr>
<tr>
<td>10.23456789_</td>
</tr>
<tr>
<td>2. Enter numbers with the number keys and decimal point key, as follows:</td>
</tr>
<tr>
<td>10 . 23456789</td>
</tr>
</tbody>
</table>
Chapter 2: Operating the Graphing Calculator

Note: The **Exp** key can be used to enter a value in scientific notation.

Example

\[6.3 \times 10^8 + 4.9 \times 10^7 \]

\[
\begin{array}{c}
\text{CL} \quad \text{6.3 Exp} \quad 8 \quad + \\
\text{4.9 Exp} \quad 7
\end{array}
\]

Entering a negative value

The negative number key (-) can be used to enter numbers, lists, and functions with negative values. Press (-) before entering the value.

Note: Do not use the (−) key to specify a negative value. Doing so will result in an error.

Example

Type -9460.827513 into the Calculation screen.

\[
\begin{array}{c}
\text{CL} \quad (-) \quad 9460.827513
\end{array}
\]
2. Performing standard math calculations

By utilizing the [+ - × ÷] and [±] keys, you can perform the standard arithmetic calculations of addition, subtraction, multiplication, and division. Press [ENTER] to perform each calculation.

Perform an arithmetic calculation

Example
Obtain the answer to “6 × 5 + 3 – 2”.

![Example calculation](image)

Using parentheses

With the [()] and [()] keys, parentheses (round brackets) can be added to group sections of expressions. Sections within the parentheses will be calculated first. Parentheses can also be used to close the passing of values in various functions, such as “round(1.2459,2)”.

Example
Obtain the answer to “(9 + 7) × (5 – 3)”.

![Example with parentheses](image)

Note:
The multiplication sign “×”, as the one in the above example, can be abbreviated if it proceeds a math function, a parenthesis “(”, or a variable. Please note that the precedence of calculations may be changed (see page 45). And, the multiplication sign "×" after a parenthesis ")“ cannot be abbreviated. For examples, Abbreviating “(1 + 2) × 3” to “(1 + 2) 3” will result in an error.

Cursor Basics

The cursor indicates where the next entry will be placed. The cursor may be placed automatically to different areas by various functions and tools, or can be moved around by using the [←] [→] [↑] [↓] keys. Use the cursor keys to select a menu item, select a cell item in a matrix, and trace along a graph.
Chapter 2: Operating the Graphing Calculator

Example

Enter $\sqrt[4]{65536} \times \sqrt[3]{8}$ in the Calculation screen. Then press [ENTER] to calculate.

1. Press [6 5 5 3 6], then [CL] to clear the display.
2. Enter 4 for the root's depth, then press [2ndF] [a√].
 The root figure is entered, with the cursor automatically placed below the figure.
 For detailed instructions of how to use the [2ndF] key, refer to “Second Function Key” and “ALPHA Key” in this chapter.
3. Enter 65536.
 At this moment, the cursor is still placed under the root figure.
4. Press [▼] to move the cursor out of the area, then enter [×] at the cursor.
5. Press [2ndF] [a√] again. Notice that the cursor is automatically placed so that you can specify the depth of this root figure. Type 3, [▼], and 8.
6. Press [ENTER] to obtain the answer.

Cursor appearance and input method

The cursor also displays information regarding the calculator’s input method. See the following diagram.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Symbol</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>![Normal mode symbol]</td>
<td>The appearance of the cursor pointer may vary according to the mode or position. The major shapes and the definitions are as follows:</td>
</tr>
<tr>
<td>When [ALPHA] is pressed</td>
<td>![ALPHA symbol]</td>
<td>![Insert mode] : Insert mode</td>
</tr>
<tr>
<td>When [2ndF] is pressed</td>
<td>![2ndF symbol]</td>
<td>![Overwrite mode] : Overwrite mode</td>
</tr>
</tbody>
</table>

* ![Normal mode symbol] and ![Normal mode symbol] appear at the insertion point within the functions such as $\frac{a}{b}$ and $\sqrt[3]{b}$.
Chapter 2: Operating the Graphing Calculator

Editing Entries

Editing modes

The calculator has the following two editing modes: equation mode, and one line mode. You can select one from the G EDITOR menu of the SETUP menu.

<table>
<thead>
<tr>
<th>Equation editor</th>
<th>One line editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>5^3</td>
<td>5^3</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

* See page 31 for details.

Cursor navigation

Use $\left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \rightarrow \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle$ to move the cursor around, and use the DEL, BS, CL keys to edit entries.

- DEL key deletes an entry AT THE CURSOR.
- BS key erases one BEFORE THE CURSOR.
- Use CL to clear the entire entry line.

About the Insert mode

When the editing mode is set to one-line, insert mode needs to be manually specified. Press and release 2ndF, then INS to set the insert mode. Press 2ndF again to return to the overwrite mode.

The CL key clears all screen entries in the Calculation screen, as well as clearing error messages. It also clears a single line equation in the $Y=$ screen.

Example

Type 3096, then change 3 to 4. When done, jump the cursor to the very end of the numbers.

```
$\left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \text{CL} \quad 3 \quad 0 \quad 9 \quad 6 \\
\left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \text{DEL} \\
\left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \\
\left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \\
\left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \quad \left\langle \begin{array}{c} \uparrow \\ \downarrow \end{array} \right\rangle \\
```

3096_-

096

4096_-
Chapter 2: Operating the Graphing Calculator

Example
Type 4500000, then remove 500.

Tips: You can jump the cursor to the beginning or the end of line by using the keys. Likewise, press to jump the cursor all the way to the bottom. Press to jump the cursor to the top. To learn about how to use the key and its functions, refer to the section “Second Function Key” of this chapter.

Second Function Key

Use to call up the calculator’s extended key functions, math functions and figures.

All functions associated with are color coded orange, and are printed above each key.

Example
Enter “2π” on the screen.

1. Press to clear the screen, then enter “2” by pressing.

2. Press. When the key is released, the cursor on the screen changes, indicating that a second function is now ready to be called up.

3. Press (key). The entry appears on the screen.
ALPHA Key

Use the **ALPHA** key to enter an alphabet character. All 26 characters accessible, as well as “θ”, “=”, “:”, and space.

All functions associated with **ALPHA** are color coded green, and are printed above each key.

Note: Do not type out math figures (sin, log, etc.), graph equation names (Y1, Y2, etc.), list names (L1, L2, etc.), or matrix names (mat A, mat B, etc.), etc. with **ALPHA** keys. If “SIN” is entered in **ALPHA** mode, then each alphabet character — “S”, “I” and “N” — will be entered as a variable. Call up the figure and equation names from within the second functions and various menus instead. If a colon (:) is used, data may continue to be entered in more than one term.

Entering one Alphabet character

Example

Enter $2 \times A$ on the screen.

1. Press [H] CL to clear the screen. Enter “$2 \times$” by pressing 2 \times.

2. To enter “A”, press **ALPHA**; the cursor pattern changes to “A” upon releasing the key.

3. Press **A** to call “A” at the cursor.

 After the entry, the cursor pattern changes back to normal.

Entering 1 or More Alphabet characters

To type more than one alphabet character, use [2ndF] then **ALPHA** to apply the “ALPHA-LOCK”. When done, press **ALPHA** to escape from the mode.
Math Function Keys

Mathematical functions can be called up quickly with the Math Function keys.

- **sin** Enters a sine function at the cursor
- **sin^{-1}** Enters an arc sine function at the cursor
- **cos** Enters a cosine function at the cursor
- **cos^{-1}** Enters an arc cosine function at the cursor
- **tan** Enters a tangent function at the cursor
- **tan^{-1}** Enters an arctangent function at the cursor
- **log** Enters a logarithm function at the cursor
- **10^x** Enters “10 to the xth power”, then sets the cursor at the “x”
- **ln** Enters a natural logarithm function at the cursor
- **e^x** Enters “e-constant to the power of x”, then sets the cursor at the “x”
- **x^2** Enters “x^2” at the cursor, to raise a number to the second power
- **x^{-1}** Enters “x^{-1}” at the cursor, to raise a number to the negative first power
- **a+b/c** Enters a mixed number.
- **a/b** Enters a fraction.
- **a^b** Enters an exponent.
- **a√** By itself enters a “root” figure; the cursor will be set at “a”, the depth.
Chapter 2: Operating the Graphing Calculator

Note: If a number precedes \(a \), \(b \), \(a \), and \(\sqrt{} \), then the number will be set as the first entry of the figure. Else, the first entry is blank and the cursor flashes.

Examples

\[
\begin{align*}
2 \left(a \right) & \left(b \right) 3 \uparrow \\
4 & \rightarrow
\end{align*}
\]

\[
\begin{align*}
\left(a \right) \left(b \right) \left(c \right) \\
\left(a \right) \left(b \right) \left(c \right) \left(d \right)
\end{align*}
\]

\[
\begin{align*}
\text{\textbf{\textless \rightarrow \rightarrow \rightarrow \rightarrow}} & \quad \text{Enters “,” (a comma) at the cursor} \\
\text{\textbf{\textsquare root \rightarrow \rightarrow \rightarrow \rightarrow}} & \quad \text{Enters a “root” figure at the cursor} \\
\text{\textbf{\textSTO \rightarrow \rightarrow \rightarrow \rightarrow}} & \quad \text{Stores a number or a formula into a variable} \\
\text{\textbf{\textRCL \rightarrow \rightarrow \rightarrow \rightarrow}} & \quad \text{Recalls an item stored in a variable} \\
\text{\textbf{\textX/\Theta/T/\n \rightarrow \rightarrow \rightarrow \rightarrow}} & \quad \text{Enters a variable “x”, “\Theta”, “T”, or “n”. The variable is automatically determined according to the calculator’s coordinate setup: “x” for rectangular, “\Theta” for polar, “T” for parametric, “n” for sequential.} \\
\text{\textbf{\textVARS \rightarrow \rightarrow \rightarrow \rightarrow}} & \quad \text{Brings up the VARS menu. (See Chapter 6).}
\end{align*}
\]
Chapter 2: Operating the Graphing Calculator

MATH, STAT, and PRGM Menu Keys

By using the [MATH], [STAT], and [PRGM] keys, you can access many menu items for complex calculation tasks. The appendix “List of Menu/Sub-menu Items” shows the contents of each, with detailed descriptions of each sub-menu item.

Example

Round the following number beyond the decimal point: 34.567

1. Press [2nd] then [MATH]. The MATH menu takes over the screen, as shown to the right. MATH menu items are displayed on the left side of the screen.

2. Use the [▲] and [▼] keys to move the cursor up and down the menu. As you scroll, you will see the corresponding sub-menu contents (shown on the right side of the screen) change.

3. Set the cursor at B NUM.

Menu items can also be selected by using shortcut keys (A through H); in this example, simply press B to select B NUM. There is no need to use ALPHA for this operation.

4. Press a shortcut key 2 to select 2 round(. The screen now goes back to the calculation screen, as follows:

Another way of selecting the sub-menu item is to press [▼] (or ENTER) on the menu item B NUM. The cursor will be extended into the sub-menu on the right. Now, move the cursor on the sub-menu down to 2 round, then press ENTER.

5. Type 3 4 5 6 7 0, and press ENTER.
Chapter 2: Operating the Graphing Calculator

SETUP Menu

Use this menu to verify basic configurations, such as to define the calculator’s editing preferences, and scientific and mathematical base units.

Checking the calculator’s configuration

To check the current configuration of the calculator, press \(\boxed{2ndF} \), then \(\boxed{SETUP} \).

By entering menu items (B DRG through H SIMPLE), various setups can be changed. To exit the SETUP menu, press \(\boxed{CL} \).

Example

Display the calculation result of “1000\(^2\)” in scientific notation.

1. Press \(\boxed{2ndF} \), then \(\boxed{SETUP} \). Within the SETUP menu, press \(\boxed{C} \), then \(\boxed{3} \) to select 3 Sci under the C FSE menu.

Tips: Using the arrow keys, move the cursor down to the C FSE position, press \(\boxed{ENTER} \), and then move the cursor down to the 3 Sci position. Press \(\boxed{ENTER} \) to select the sub-menu item.

2. The display goes back to the SETUP menu’s initial screen.

3. Press \(\boxed{CL} \) to exit the SETUP menu.

4. Press \(\boxed{EE} \) \(\boxed{CL} \) to clear the Calculation screen, type \(1 \ 0 \ 0 \ 0 \ \boxed{x^2} \), then \(\boxed{ENTER} \).
Chapter 2: Operating the Graphing Calculator

SETUP Menu Items

DRG: For trigonometric calculations and coordinate conversions, various angle units can be selected: Please make sure to use the appropriate angle unit when making trigonometric calculations (e.g. sin, cos).

- **Deg** Angle values to be set in degrees. (360°)
- **Rad** Angle values to be set in radians (default). (2π)
- **Grad** Angle values to be set in gradients. (400°)

Note: Please use "Degree" (DEG) for angle values and not GRAD because this is used to represent Grads, where one turn comprises 400 Grads.

FSE: Various decimal formats can be set:

- **FloatPt** Answers are given in decimal form with a floating decimal point (default). The SETUP in TAB does not have any effect on this setting. (default)
 If the value of the mantissa does not fit within the range ±0.000000001 to ±9999999999, the display changes to scientific notation. The display mode can be changed according to the purpose of the calculation.

- **Fix** Answers are given in decimal form. The decimal point can be set in the TAB menu.

- **Sci** Answers are given in “scientific” notation. For example, “3500” is displayed as “3.500000000E3”. The decimal point can be set in the TAB menu.

- **Eng** Answers are given in “engineering” notation with exponents set to be multiples of 3. “100000” will be displayed as “100.0000000E3”. The decimal point can be set in the TAB menu.

TAB: Sets the number of digits beyond the decimal point (0 through 9). The default is “9”.

Chapter 2: Operating the Graphing Calculator

COORD: Sets the calculator to various graph coordinate systems.

- **Rect** Rectangular coordinates (default)
- **Param** Parametric equation coordinates
- **Polar** Polar coordinates
- **Seq** Sequential graph coordinates

ANSWER: Sets the answer preference to various number formats.

- **Decimal (Real)** Answers will be given in decimal form (default).
- **Mixed (Real)** Answers will be given in mixed fractions, whenever appropriate.
- **Improp (Real)** Answers will be given in improper fractions, whenever appropriate. (e.g. $2 \frac{1}{2}$)
- **x±yi (Complex)** Answers will be given in complex rectangular form.
- **r∠θ (Complex)** Answers will be given in complex polar form.
Chapter 2: Operating the Graphing Calculator

EDITOR: Sets the editing style to one of two available formats.

Equation
Formulas can be entered in a "type it as you see it approach" (default setting).

One line
Formulas will be displayed on one line.

Note: Immediately after changing the EDITOR, the calculator will return to the calculation screen and the following data will be cleared.

- ENTRY memory
- Equations stored in the graph equation window (Y=)
- Equations temporally stored in the SOLVER window (2ndF SOLVER)
- Resetting to the default settings (2ndF OPTION E 1) will also clear the above data.

Expression of up to 114 bytes can be entered in the Equation edit mode. If the expression exceeds the screen width, it is horizontally extended.

Expression of up to 160 bytes can be entered in One-line edit mode. If the expression exceeds the screen width, it goes to the next line.

SIMPLE: Sets the preference for handling reducible fractions.

- **Auto**
 Fractions will automatically be reduced down (default).

- **Manual**
 Fractions will not be reduced before simplifying (Simp).

Note: All the procedures in this manual are explained using the default settings unless otherwise specified.
Chapter 2: Operating the Graphing Calculator

Calculations Using MATH Menu Items

The MATH menu contains functions used for more elaborate math concepts such as trigonometry, logarithms, probability, and math unit/format conversions. The MATH menu items may be incorporated into your expressions.

A Note about Degrees and Radians

The degree and radian systems are two of the basic methods of measuring angles. There are 360 degrees in a circle, and “2-pi” radians. 1 degree is equal to \(\pi/180 \) radians. “Then, what’s this pi?”, you may ask. Pi, or to use its symbol “\(\pi \)”, is the ratio of the circumference of a circle to its diameter. The value of \(\pi \) is the same for any circle “3.14…”, and it is believed to have an infinite number of digits beyond the decimal point.

Note: Please use “Degree” (DEG) for angle values and not GRAD because this is used to represent Grads, where one turn comprises 400 Grads.

A CALC

Contains sub-menu tools for advanced calculations.

<table>
<thead>
<tr>
<th>MATH Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 (\log_2)</td>
<td>Enters a base-2 logarithm ((\log_2)).</td>
</tr>
<tr>
<td>02 (2^x)</td>
<td>Raises 2 to a power. Sets the cursor to exponent.</td>
</tr>
<tr>
<td>03 fmin(</td>
<td>Returns the value of variable (x) when the equation (Y) has the minimum value within the specified range of (x).</td>
</tr>
<tr>
<td>04 fmax(</td>
<td>Return the value of variable (x) when the equation (Y) has the maximum value within the specified range of (x).</td>
</tr>
<tr>
<td>05 d/dx(</td>
<td>Returns the derivative of equation (Y) at the specified (X) value using the tolerance (if not specified, default value is 1E–5).</td>
</tr>
</tbody>
</table>
Chapter 2: Operating the Graphing Calculator

06 \[\int \text{equation, lower limit, upper limit [tolerance]} \, dx \]
Calculates an integral value of equation Y from the lower limit to the upper limit using the specified tolerance (if not specified, default value is 1E–5).
Use in conjunction with the 07 dx sub-menu item.

• Press the keys as follows in the Equation edit mode.

07 dx Enters a differential “dx” in an integration expression.

08 \[\sum(\text{expression, initial value, end value [increment]}) \]
Returns the cumulative sum of a given expression from an initial value to an end value in the specified increment value (if not specified, default increment is 1).

09 sec sec value Enters a secant function to be used in a trigonometric expression.

10 csc csc value Enters a cosecant (cosec) function to be used in a trigonometric expression.

11 cot cot value Enters a cotangent (cotan) function to be used in a trigonometric expression.

12 sec⁻¹ sec⁻¹ value Enters an inverse secant.
Chapter 2: Operating the Graphing Calculator

13 \(\csc^{-1} \) \(\csc^{-1} \) \textit{value}
Enters an inverse cosecant.

14 \(\cot^{-1} \) \(\cot^{-1} \) \textit{value}
Enters an inverse cotangent.

15 \textit{sinh} \(\textit{value} \)
Enters a hyperbolic sine.

16 \textit{cosh} \(\textit{value} \)
Enters a hyperbolic cosine.

17 \textit{tanh} \(\textit{value} \)
Enters a hyperbolic tangent.

18 \(\sinh^{-1} \) \(\sinh^{-1} \) \textit{value}
Enters an inverse hyperbolic sine.

19 \(\cosh^{-1} \) \(\cosh^{-1} \) \textit{value}
Enters an inverse hyperbolic cosine.

20 \(\tanh^{-1} \) \(\tanh^{-1} \) \textit{value}
Enters an inverse hyperbolic tangent.

\textbf{B NUM}
Use the sub-menu items below to convert a value.

1 \textit{abs}(\textit{value})
Returns an absolute value.
* A real number, a list, matrix, variable, or equation can be used as values.

Example

- Find an absolute value of \(-40.5\).

\begin{align*}
\text{MATH} & \quad \text{B} & \quad 1 & \quad (-) \\
4 & . & 0 & . & 5 & \quad \text{ENTER}
\end{align*}

2 \textit{round}(\textit{value} [, \textit{digit number of decimals}])
Returns the rounded value of the term in parentheses. A rounding point can be specified.
* A real number, a list, matrix, variable, or equation can be used as values.

Example

- Round off 1.2459 to the nearest hundredth. (= 1.25)

\begin{align*}
\text{MATH} & \quad \text{B} & \quad 2 & \quad 1 & . & 2 & 4 & 5 & 9 & \quad , & \quad 2 & \quad \text{ENTER}
\end{align*}
Chapter 2: Operating the Graphing Calculator

3 ipart ipart value
Returns only the integer part of a decimal number.
* A real number, a list, matrix, variable, or equation can be used as values.

Example
• Discard the fraction part of 42.195. (=42)
 MATH B 3 4 2 . 1 9 5 ENTER

4 fpart fpart value
Returns only the fraction part of a decimal number.
* A real number, a list, matrix, variable, or equation can be used as values.

Example
• Discard the integer part of 32.01. (=0.01)
 MATH B 4 3 2 . 0 1 ENTER

5 int int value
Rounds down a decimal number to the closest integer.

Example
• Round down 34.56 to the nearest whole number. (= 34)
 MATH B 5 3 4 . 5 6 ENTER

6 min(min(list)
Finds and returns the minimum value within a list of numbers. To define a list of more than two numbers, group the numbers with brackets (2ndF { and 2ndF }), with each element separated by a comma.

Example
• Find the smallest value among 4, 5, and -9.
 MATH B 6 2ndF { 4 , 5 , (-) }
 9 2ndF } ENTER

7 max(max(list)
Finds and returns the maximum value within a list of numbers.

Example
• Find the smallest value among 4, 5, and -9.
 MATH B 7 2ndF { 4 , 5 , (-) 9
 2ndF } ENTER
Chapter 2: Operating the Graphing Calculator

8 lcm(
\textit{lcm(natural number, natural number)}

Returns the least common multiple of two integers.

Example

- Find the least common multiple of 12 and 18.

\[
\text{MATH B 8 12 , 18 ENTER}
\]

9 gcd(
\textit{gcd(natural number, natural number)}

Returns the greatest common divisor of two integers.

Example

- Find the greatest common divisor of 16 and 36.

\[
\text{MATH B 9 16 , 36 ENTER}
\]

C PROB

1random random [(number of trial)]

Returns a random decimal number between 0 and 1 (uniform distributed).

Example

- Make a list with three random numbers.

\[
m \times 100, \text{random} \times 100 \{17 63 48\}
\]

\[
r\text{nd} \text{Int}(1,6,3) \{4 3 2\}
\]

Note: Set the “FSE” to “Fix” and “TAB” to “0”.

\[
2 \text{ndF} (\text{MATH} \ C 1 \times 100 , \text{MATH} \ C 1 \times 100 , \text{MATH} \ C \ 1 \times 100 2 \text{ndF}) \text{ENTER}
\]

2 rndInt(rndInt(minimum value, maximum value [, number of trial])

Returns a specified number of random integers, between a minimum and a maximum value.

Example

- Produce eight random integers, ranging between values of 1 and 6.

\[
\text{MATH C 2 1 , 6 , 3) ENTER}
\]

* Minimum value: \(0 \leq x_{\text{min}} < 10^{10}\)

* Maximum value: \(0 \leq x_{\text{max}} < 10^{10}\)

* Number of trial: \(1 \leq n \leq 999\)
3 \textbf{rndNorm}() \textbf{rndNorm}(\textit{mean, standard deviation [number of trial]})

Returns a random real number from a specified normal distribution.

* Number of trial:
 \[1 \leq n \leq 999 \text{ (} n \text{ is an integer.)}\]
 Standard deviation: \(0 \leq \sigma\)

4 \textbf{rndBin}() \textbf{rndBin}(\textit{number of trial, probability of success [number of simulations]})

Returns a random real number from a specified binominal distribution.

* Number of trial: \(1 \leq n \leq 9999\)
 Probability of success: \(0 \leq p \leq 1\)
 Number of simulations:
 \[1 \leq n \leq 999 \text{ (} n \text{ is an integer.)}\]

\textbf{Note:} The random functions will generate different numbers every time.
Therefore, the table values of the random functions will be different every time. When in case of random-based graphing calculations, the tracing values and other parameters of the graph will not match the graph's visual representation.

5 \textbf{nPr}

Returns the total number of different arrangements (permutations) for selecting \(r\) items out of \(n\) items.

\[nPr = \frac{n!}{(n-r)!}\]

\textbf{Example}

- How many different ways can 4 people out of 6 be seated in a car with four seats?
 \[6 \text{ MATH } \text{ C } 5 \text{ 4 ENTER}\]

6 \textbf{nCr}

Returns the total number of combinations for selecting \(r\) item out of \(n\) items. (Binomial distribution)

\[nCr = \frac{n!}{r!(n-r)!}\]

\textbf{Example}

- How many different groups of 7 students can be formed with 15 students?
 \[1 \text{ 5 MATH } \text{ C } 6 \text{ 7 ENTER}\]
Chapter 2: Operating the Graphing Calculator

7 ! Returns a factorial.

Example
- Calculate $6 \times 5 \times 4 \times 3 \times 2 \times 1$.

 $6 \text{ MATH } \underline{C} \underline{7} \text{ ENTER}$

D CONV These tools deal with conversions between different angle units and between rectangular and polar coordinates.

Sexagesimal and Degree System

The “base 60” sexagesimal system, as well as the minutes-second measurement system, was invented by the Sumerians, who lived in the Mesopotamia area around the fourth millennium B.C. (!) The notion of a 360 degrees system to measure angles was introduced to the world by Hipparchus (555-514 B.C.) and Ptolemy (2nd cent. A.D.), about 5000 years later. We still use these ancient systems today, and this calculator supports both formats.

1 \rightarrow \text{deg} Takes a number in sexagesimal form, and converts it into a decimal number. To enter a number in sexagesimal form, use items in the “ANGLE” sub-menu, described as described in Chapter 3.

Example
- Convert $34^\circ 56' 78''$ to degrees.

 $3 \underline{4} \text{ MATH } \underline{E} \underline{1} \underline{5}$

 $6 \text{ MATH } \underline{2} \underline{7} \underline{8} \text{ MATH}$

 $3 \text{ MATH } \underline{D} \underline{1} \text{ ENTER}$

2 \rightarrow \text{dms} Takes a number in decimal form (in degrees), and converts it into a sexagesimal number.

Example
- Show 40.0268 degrees in degrees, minutes, and seconds.

 $40.0268 \text{ MATH } \underline{D} \underline{2} \text{ ENTER}$

38
Rectangular/polar coordinate conversion
This calculator is equipped with rectangular coordinates and polar coordinates conversion capabilities.

Rectangular to polar coordinate conversion functions
Conversion formulas: \(r = \sqrt{x^2 + y^2}, \theta = \tan^{-1}(y/x) \)

Polar to rectangular coordinate conversion functions
Conversion formulas: \(x = r\cos\theta, y = r\sin\theta \)

3 \(xy \rightarrow r(\text{x coordinate, y coordinate}) \)
Returns polar coordinate radius value from X-Y rectangular coordinates.

4 \(xy \rightarrow \theta(\text{x coordinate, y coordinate}) \)
Returns polar coordinate \(\theta \) value from X-Y rectangular coordinates.
The following ranges are used to find \(\theta \).
- Degree mode: \(0 \leq |\theta| \leq 180 \)
- Radian mode: \(0 \leq |\theta| \leq 2\pi \)
- Gradient mode: \(0 \leq |\theta| \leq 200 \)

5 \(r\theta \rightarrow x(\text{r coordinate, \theta coordinate}) \)
Returns rectangular coordinate \(X \) value from \(r-\theta \) polar coordinates.

6 \(r\theta \rightarrow y(\text{r coordinate, \theta coordinate}) \)
Returns rectangular coordinate \(Y \) value from \(r-\theta \) polar coordinates.
Chapter 2: Operating the Graphing Calculator

E ANGLE Use these tools to enter the symbols to specify angle units.

1° Inserts a degree, and sets the preceding value in degrees.

2’ Inserts a minute, and sets the preceding value in minutes.

3” Inserts a second, and sets the preceding value in seconds.

Example

• Enter 34° 56' 78".

4 r Enters an "r", to enter a number in radians.

Example

• Type 2 radian.

5 g Enters an “g” symbol, to enter a number in gradients.

F INEQ Use the equality/inequality figures to compare two values. These sub-item tools return 1 (true) or 0 (false).

1 = Tests whether a preceding value and a following value are equal.

2 ≠ Tests whether a preceding value and a following value are not equal.

3 > Tests whether a preceding value is larger than a following value.

4 ≥ Tests whether a preceding value is larger than OR equal to a following value.

5 < Tests whether a preceding value is smaller than a following value.

6 ≤ Tests whether a preceding value is smaller than OR equal to a following value.
G LOGIC

Use the **LOGIC** sub-menu items to perform boolean operations. In the N-base calculation mode (binary, octal, decimal and hexadecimal), **A LOGIC** will directly appear when **MATH** is pressed.

The following is the truth table of the combination of input A and B:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A and B</th>
<th>A or B</th>
<th>A xor B</th>
<th>A xnor B</th>
<th>A</th>
<th>not A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The following examples show the answer screen when executing a boolean operation for AND, OR, XOR, XNOR between “1100” and “1010” in binary mode. Compare the results (binary) to the above table.

1. Press `2ndF TOOL A ENTER` to enter the binary, octal, and hexadecimal calculation mode.
2. Press `▼ ▼ ▼` to select the binary mode.

1 and value A and value B
Enters an “AND” logic figure.

```
1100 MATH 1 1010 ENTER
```

2 or value A or value B
Enters an “OR” logic figure.

```
1100 MATH 2 1010 ENTER
```

3 not not value
Enters a “NOT” logic figure.

```
MATH 3 10 ENTER
```
Chapter 2: Operating the Graphing Calculator

4 neg neg value
Enters a “neg” logic figure.
\[\text{MATH} \ 4 \ 1 \ \text{ENTER} \]

Note: “4 neg” menu appears only in the N-base calculation (binary, octal, decimal and hexadecimal) mode.

5 xor value A xor value B
Enters an Exclusive-OR (xor) logic figure.
\[1100 \text{MATH} \ 5 \ 1010 \ \text{ENTER} \]

6 xnor value A xnor value B
Enters an Exclusive-NOR (xnor) logic figure.
\[1100 \text{MATH} \ 6 \ 1010 \ \text{ENTER} \]

H COMPLX In order to use the sub-menu items within the COMPLX menu, the calculator must be set up to handle complex numbers. Otherwise the result will be a data type error.
Refer to the section “SETUP Menu Items” in chapter 2 for changing/verifying the calculator’s setup to enable complex number answers, in either rectangular or polar coordinates.

1 conj conj(complex number)
Returns the complex conjugate of the specified complex number (or list of complex numbers).

2 real real(complex number)
Returns the real part of a complex number (or list of complex numbers).
Chapter 2: Operating the Graphing Calculator

3 image(complex number)
Returns the imaginary part of a complex number (or list of complex numbers).

4 abs(complex number)
Returns the absolute value of a complex number (or list of complex numbers).

5 arg(complex number)
Takes the coordinates \((x + yi)\), and returns the \(\theta\).

Calculations using complex numbers
To calculate using complex numbers, select the sub-menu item \(4 x \pm yi\) or \(5 r \angle \theta\) in the ANSWER of the SETUP menu items.
The initial screen for the complex number calculation mode is the same as for the real number mode.
Complex numbers can be noted using either \(4 x \pm yi\) (rectangular coordinates) or \(5 r \angle \theta\) (polar coordinates).

Example
• Calculate \((3 + 4i) \times (4 - 6i)\)

Note: It is possible to input complex numbers \((i)\) in the real number mode, however an error message will return.
Chapter 2: Operating the Graphing Calculator

Functions available for complex number calculations

The following function keys are available for complex number calculations without the limits existing in the real number calculations.

\[x^2, x^{-1}, \log, \ln, 10^x, e^x, a^b, \sqrt[n]{}, \sqrt{-} \]

The following MATH menu functions are also available for complex number calculations.

\[\text{abs()}, \text{round()}, \text{ipart}, \text{fpart}, \text{int} \]
Precedence of Calculations

When solving a mathematical expression, this calculator internally looks for the following figures and methods (sorted in the order of evaluation):

1) Fractions (1/4, a/b, etc.)
2) Complex angles (∠)
3) Single calculation functions where the numerical value occurs before the function (X², X⁻¹, !, °, ′, ″, etc)
4) Exponential functions (aᵇ, √, etc)
5) Multiplications between a value and a stored variable/constant, with “×” abbreviated (2π, 2A, etc.)
6) Single calculation functions where the numerical value occurs after the function (sin, cos, tan, sin⁻¹, cos⁻¹, tan⁻¹, log, 10ˣ, ln, eˣ, √, abs, int, ipart, fpart, (-), not, neg, etc.)
7) Multiplications between a number and a function in #6 (3cos20, etc. “cos20” is evaluated first)
8) Permutations and combinations (nPr, nCr)
9) ×, ÷
10) +, –
11) and
12) or, xor xnor
13) Equalities and nonequalities (<, ≤, >, ≥, ≠, →deg, →dms, etc.)

Example
The key operation and calculation precedence

\[
\begin{array}{ccccccc}
5 & + & 2 & \times & \sin & 30 & + & 25 & \times & 5 & a^b & 3 & \text{ENTER} \\
& & & & 1st & & & & 2nd & & 4th & & 5th & & 6th & \\
& & & & & & & & & & & & & & \\
5 & + & 2 & \times & \sin & 30 & + & 25 & \times & 5 & a^b & 3 & \text{ENTER} & \\
& & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & \\
\end{array}
\]

• If parentheses are used, parenthesized calculations have precedence over any other calculations.
Chapter 2: Operating the Graphing Calculator

• About the order of precedence of the multiplications, that the multiplication sign “×” before such as “(“, π and a variable is abbreviated, are higher than that of the multiplications that the multiplication sign “×” is not abbreviated. Therefore, if there is a division before a multiplication, the order of calculations may be changed and then the calculation results may be changed.

Example

\[
48 \div 24 \times (6 + 2) = \\
48 \div 24 \times (6 + 2) \quad \text{ENTER} \\
\rightarrow 16 \quad [(48 \div 24) \times (6 + 2) =] \\
48 \div 24 \times (6 + 2) \quad \text{ENTER} \\
\rightarrow 0.25 \quad [48 \div (24 \times (6 + 2)) =]
\]

Error Messages

The calculator will display an error message when a given command is handled incorrectly, or when instructions cannot be handled correctly such that the task cannot be processed further. Various types of error messages are given to inform users the types of situations to be remedied.

For example, performing the following key strokes:

\[
5 \times \quad \text{ENTER}
\]

will result in an error, and the error message will be displayed.

In such a situation, you can go back to the expression to correct its syntax by pressing \text{[} \leftarrow \text{]} or \text{[} \rightarrow \text{]}, or you can erase the entire line to start over by pressing \text{[} \text{CL} \text{]}. For a list of various error codes and messages, refer to the appendix.
Chapter 2: Operating the Graphing Calculator

Resetting the Calculator

Use the reset when a malfunction occurs, to delete all data, or to set all mode values to the default settings. The resetting can be done by either pressing the reset switch located in the battery compartment, or by selecting the reset in the OPTION menu. Resetting the calculator’s memory will erase all data stored by the user; proceed with caution.

1. Using the reset switch

1. Pull down the notch to open the battery cover located on the back of the calculator.
2. Place the battery cover back until the notch is snapped on.
3. **Wait a few seconds** and press ON. The verification window will appear on the screen.
4. Press CL to clear all the stored data. Press ON to cancel resetting. After CL is pressed, the calculator’s memory will be initialized. Press any key to display the calculation screen.

Note: If the above verification window does not appear, remove the battery cover and gently push the RESET switch with the tip of a ball-point pen or a similar object while pressing ON simultaneously.

DO NOT use a tip of a pencil or mechanical pencil, a broken lead may cause a damage to the button mechanism.
• The message on the right may occasionally appear. In this case, repeat the procedure from step 1 to prevent loss of data.

2. Selecting the RESET within the OPTION menu

1. Press \(\text{2nd F} \), then \(\text{OPTION} \). The OPTION menu appears.

2. While in the OPTION menu, press \(\text{E} \) to select \(\text{E} - \text{RESET} \); the RESET sub-menu items should appear on the right side of the screen.

3. The first item \(\text{1 default set} \) will initialize only the SETUP and FORMAT settings, while the second item \(\text{2 All memory} \) will erase all memory contents and settings. To reset the memory, select \(\text{2 All memory} \) by pressing \(\text{2} \). The verification window will appear.

4. Press the \(\text{CL} \) key to clear all data stored on the calculator. Press any key to continue.
Chapter 3
Manual Calculations

1. Try it!

The speed of light is known to be 186,282 miles (approximately 300,000 kilometers) per second. That means light can go around the earth 7 and a half times within a second!

Suppose you are standing at the equator. While the earth rotates over the period of one day, you also rotate around the globe at a certain speed. Knowing the facts above, can you figure out how fast you are traveling, in miles per hour?

Since distance traveled = average speed × time taken, the following equation can be formed to find out the circumference of the earth (x miles):

\[x \times 7.5 = 186282 \]

Then,

\[x = \frac{186282}{7.5} \]

Since you know the earth turns around once a day (which means, in 24 hours), divide the above “x” with 24 to get a value in miles per hour.

\[24 \times v = x \]

\[v = \frac{x}{24} \]
Chapter 3: Manual Calculations

CONCEPT

1. Enter a math expression, then perform the calculation.
2. Save a number into a variable, then recall the value later.

PROCEDURE

1. First, press \[\text{#} \] then \[\text{C} \] to clear any screen entries.
2. Type \(186282 \div 7.5 \), then press \[\text{ENTER} \]. The circumference of the earth is thus obtained.

3. Store the answer in a variable. A variable is a symbol under which you can store a numerical value.

 We will use variable \(A \) to store the circumference of the earth. Press \[\text{STO} \] to set the “store” mode. Press \[\text{ALPHA} \] \(A \), then \[\text{ENTER} \] to store the answer. To call up the stored answer, press \[\text{ALPHA} \] \(A \) \[\text{ENTER} \] again.

 Note: While checking the stored values, you may see “0”; this means that no value is stored in the variable.

4. Now, since the value you have stored under “A” is the distance you will be travelling in 24 hours, divide the number by 24. Press \[\text{ALPHA} \] \(A \) \(\div 24 \), then \[\text{ENTER} \].

 So, you are travelling at 1034.9 miles/hour. That is fast!
Chapter 3: Manual Calculations

2. Try it!

The Mendocino Tree, a coast redwood growing in Montgomery Woods State Reserve in California, is known to be the tallest living tree in the world. You are to find out how tall the tree is by using the following factors:

- The distance from you to the bottom of the tree is exactly 505.8 feet, and the tree stands vertically.
- The angle of elevation between the top and the bottom of the tree is 36 degrees.

If the base length of the right triangle is 505.8 feet, and the angle of elevation is 36 degrees, then the following expression can be derived:

\[
\text{the height of the Mendocino tree (ft.)} = 505.8 \text{ ft.} \times \tan(36°)
\]

CONCEPT

1. Verify/change the calculator’s angle unit.
2. Use the calculator’s trigonometric function key to enter/perform the calculation.

PROCEDURE

1. Since the angle of elevation is measured in degrees, the calculator’s angle setting will need to be matched with that. Press \(\text{2ndF SETUP} \) to bring up the SETUP menu.
2. On the right side of the SETUP menu, the current setup will be displayed. Make sure that the top line is indicated as \(\text{Deg} \) (i.e., degrees). If not, then the angle system will need to be changed. Press \(\text{B DRG} \) to select \(\text{B DRG} \), then press \(\text{1} \) to select \(\text{1 Deg} \).
3. Now, let's work on the actual calculation part. Press the \(\text{Calc} \) key to enter the Calculation screen, and press \(\text{CL} \) to clear any screen entries.
3. Arithmetic Keys

Performing addition, subtraction, multiplication and division

There are various keys for arithmetic calculations. Use the +, -, ×, ÷, (-), (), and () keys to perform basic arithmetic calculations. Press ENTER to solve an equation.

Example

- Calculate 1 + 2.
 1 + 2 ENTER

- Subtract 21 from 43.
 43 - 21 ENTER

A Note about expressions

An expression is a mathematical statement that may use numbers and/or variables that represent numbers. This works just like a regular word sentence; one may ask “how are you?”, and you may answer “okay.” But what if an incomplete sentence is thrown, such as “how are?” You’ll wonder, “how are... what?”; it just doesn’t make sense. A math expression needs to be complete as well. $x \times 2$, $4x$, $2sinx \times cosx$ form valid expressions, while “$1 \times$” and “cos” do not. If an expression is not complete, the calculator will display an error message upon pressing the ENTER key.

Example

- Calculate $12 + 34$.
 $12 + 34$ ENTER

- Subtract 21 from 43.
 $43 - 21$ ENTER

+ Enters a “+” sign for addition.

Example

- Calculate $12 + 34$.
 $12 + 34$ ENTER

- Subtract 21 from 43.
 $43 - 21$ ENTER

- Enters a “−” sign for subtraction.

Example

- Subtract 21 from 43.
 $43 - 21$ ENTER
Enters a “×” sign for multiplication.

Example

• Multiply 12 by 34.

\[
\begin{array}{c}
12 \\
\times \\
34
\end{array}
\]

\[
= 408
\]

Enters a “÷” sign for division.

Example

• Divide 54 by 32.

\[
\begin{array}{c}
54 \\
\div \\
32
\end{array}
\]

\[
= 1.6875
\]

When to leave out the “×” sign

The multiplication sign can be left out when:

a. It is placed in front of an open parenthesis.

b. It is followed by a variable or a mathematical constant (π, e, etc.).

c. It is followed by a scientific function, such as sin, log, etc.:

\[
\begin{array}{c}
2(3+4) \\
\times \\
(x-3)(x+4)
\end{array}
\]

\[
= 14 \\
= -12
\]

Sets a negative value.

Example

• Calculate -12 × 4.

\[
\begin{array}{c}
(-) \\
12 \\
\times \\
4
\end{array}
\]

\[
= -48
\]

Note:

Do not use the \[−\] key to enter a negative value; use the \[−\] key instead.

Enters an open parenthesis. Use with “)” as a pair, or the calculation will result in an error.

Enters a closing parenthesis; a parenthesis left open will result in an error.
Example

• Calculate \((4 + 6) \div 5\).

\[
\begin{array}{c}
(4 + 6) \div 5 \\
5 \text{ ENTER}
\end{array}
\]

Note: Functions, such as “round(“, automatically include an open parentheses. Each of these functions needs to be closed with a closing parenthesis.

4. Calculations Using Various Function Keys

Use the calculator’s function keys to simplify various calculation tasks.

\(\text{sin}\)

Enters a sine function to be used in a trigonometric calculation.

Example

• Calculate \(\sin \frac{\pi}{2}\).

\[
\begin{array}{c}
\text{sin} \ (2\text{nd F} \ \pi \ \frac{\pi}{2} \ 2 \\
\text{ENTER}
\end{array}
\]

\(\text{cos}\)

Enters a cosine function to be used in a trigonometric calculation.

Example

• Calculate \(\cos \frac{\pi}{3}\).

\[
\begin{array}{c}
\text{cos} \ (2\text{nd F} \ \pi \ \frac{\pi}{3} \ 3 \ \text{ENTER}
\end{array}
\]

\(\text{tan}\)

Enters a tangent function to be used in a trigonometric calculation.

Example

• Calculate \(\tan \frac{\pi}{4}\).

\[
\begin{array}{c}
\text{tan} \ (2\text{nd F} \ \pi \ \frac{\pi}{4} \ 4 \\
\text{ENTER}
\end{array}
\]

\(\text{sin}^{-1}\)

Enters an arcsine function to be used in a trigonometric expression.

Example

• Calculate \(\arcsin 1\).

\[
\begin{array}{c}
2\text{nd F} \ \text{sin}^{-1} \ 1 \ \text{ENTER}
\end{array}
\]
Chapter 3: Manual Calculations

\[\text{\textbf{cos}^{-1}} \] Enters an arccosine function to be used in a trigonometric expression.

Example

• Calculate arccosine 0.5.

\[
\begin{align*}
\text{2ndF} \quad \text{\textbf{cos}^{-1}} \quad 0.5 \quad \text{ENTER}
\end{align*}
\]

\[\text{\textbf{tan}^{-1}} \] Enters an arctangent function to be used in a trigonometric expression.

Example

• Calculate arctangent 1.

\[
\begin{align*}
\text{2ndF} \quad \text{\textbf{tan}^{-1}} \quad 1 \quad \text{ENTER}
\end{align*}
\]

Note: Expressions with inverse trigonometric functions evaluate in the following ranges.

\[
\begin{align*}
\theta &= \sin^{-1} x, \quad \theta &= \tan^{-1} x, \quad \theta &= \cos^{-1} x \\
\text{Deg:} \quad 0 \leq |\theta| \leq 90 &\quad \text{Deg:} \quad 0 \leq |\theta| \leq 180 \\
\text{Rad:} \quad 0 \leq |\theta| \leq \frac{\pi}{2} &\quad \text{Rad:} \quad 0 \leq |\theta| \leq \pi \\
\text{Grad:} \quad 0 \leq |\theta| \leq 100 &\quad \text{Grad:} \quad 0 \leq |\theta| \leq 200
\end{align*}
\]

\[\text{\textbf{log}} \] Enters a “log” function for a logarithmic calculation

Example

• Calculate log 100.

\[
\begin{align*}
\text{\textbf{log}} \quad 1 \quad 0 \quad 0 \quad \text{ENTER}
\end{align*}
\]

\[\text{\textbf{10}^x} \] Enters a base of 10, setting the cursor at the exponent.

Example

• Calculate \(5 \times 10^5\).

\[
\begin{align*}
5 \quad \times \quad \text{2ndF} \quad \text{\textbf{10}^x} \quad 5 \quad \text{ENTER}
\end{align*}
\]
Chapter 3: Manual Calculations

\[\ln e^4 \]

Enters a natural logarithm function.

Example
- Calculate \(\ln e^4 \).

\[
\ln (e^4) = 4
\]

\[e^x \]

Enters the Euler Number \(e \) (2.71…) to a power. The cursor will then be placed at the exponent.

Example
- Obtain a value of \(e^3 \).

\[
2^{nd} \ F \ e^x \ 3 \ \text{ENTER}
\]

\[x^2 \]

Squares the preceding number.

Example
- Obtain the answer to \(12^2 \). (= 144)

\[12 \ x^2 \ \text{ENTER} \]

Note: When no base number is entered, the base number area will be left blank and just the exponent appear.

\[
\text{CL} \ x^2 \ 1 \ 2 \ \text{ENTER}
\]

\[x^{-1} \]

Enters “\(x^{-1} \)”, and returns an inverse by raising a value to the -1 power. The inverse of “5”, for example, is “\(\frac{1}{5} \)’’.

Example
- Raise 12 to the -1 power. (= 0.083333333)

\[
1 \ 2 \ (2^{nd} \ F) \ x^{-1} \ \text{ENTER}
\]

Note: When no base number is entered, “\(x^{-1} \)” will be entered, with “\(x \)” left blank.

\[
\text{CL} \ 2^{nd} \ F \ x^{-1} \ 1 \ 2 \ \text{ENTER}
\]

\[ab{\frac{c}{d}} \]

Enters a mixed number.

Example
- Enter \(4 \frac{5}{6} \)

\[
4 \ ab{\frac{c}{d}} \ 5 \ \text{ENTER}
\]
Chapter 3: Manual Calculations

Note: When no value is entered prior to this key, the number areas will be left blank.

* If the calculator is set to one-line mode, \(\text{ab/c} \) enters "\(\cdot \)" (integer-fraction separator) only. Use \(\text{ab/c} \) in combination with \(\text{a/b} \) as follows.

• Enter \(4 \frac{5}{6} \) in one-line mode
 \[4 \frac{5}{6} \]

* Integer part of the mixed number must be a natural number. A variable can not be used. Equation or use of parenthesis, such as \((1+2)2^3-3\) or \((5)2^{-3}\), causes syntax error.

* When a numerator or a denominator is negative, the calculator will cause error.

\(\text{ab/c} \) Enters a fraction, setting the preceding number as its numerator.

* If the calculator is set to one-line mode, then "\(\cdot \)" will be entered instead. For example, "\(2-5\)" indicates "\(\frac{2}{5}\)."

Example
• Calculate \(\frac{2}{5} + \frac{3}{4} \).
 \[\frac{2}{5} + \frac{3}{4} \]

\(\text{a/b} \) Enters an exponent, setting the preceding number as its base.

Example
• Raise 4 to the 5th power. (= 1024)
 \[4^5 \]
Chapter 3: Manual Calculations

Note: When no base value is entered, "a^b" will be entered with both number areas left blank.

```
CL ab ← 4 ▶ 5 ENTER
```

When calculating x to the power of m-th power of n, enter as follows;

- **Calculate** \(2^{32} (= 512)\)

```
2 (ab) 3 (ab) 2 ENTER
```

The above calculation is interpreted as \(2^{32} = 2^5\).

If you wish to calculate \((2^3)^2 = 8^2\), press \(2 \left(\begin{array}{c} \text{ab} \\ 3 \end{array} \right) \), \(\left(\begin{array}{c} 2 \text{ab} \\ 3 \end{array} \right) \). \(\text{ab} \) Enter "\(\sqrt[\text{a}]{}\)"

Example

- **Bring** 4 to the 5-th root. \((= 1.319507911)\)

```
5 \(2ndF\) \(\sqrt[\text{a}]{}\) 4 ENTER
```

Note: When no depth of power is entered, "\(\sqrt[\text{a}]{}\)" is entered, with both number areas left blank.

```
CL \(2ndF\) \(\sqrt[\text{a}]{}\) ▶ 5 ▶ 4 ENTER
```

\(\sqrt[\text{a}]{}\) Enters a square root symbol.

Example

- **Obtain** the square root of 64. \((= 8)\)

```
\(2ndF\) \(\sqrt{}\) 6 4 ENTER
```

\(,\) Enters a comma " , ", at the cursor. A comma is required in some of the MATH functions.

\(\angle\) Sets the following value as \(\theta\), assuming the preceding value is the radius of the polar coordinates.

\(i\) Enters \(i\) (representing \(\sqrt{-1}\)), to make imaginary or combination numbers.
Chapter 3: Manual Calculations

STO Stores a number in a variable.

Example
- Let A = 4, and B = 6.
 Calculate A + B.

 \[
 \begin{array}{c}
 4 \text{ STO } \alpha A \text{ ENTER} \\
 6 \text{ STO } \alpha B \text{ ENTER} \\
 \alpha A + \alpha B \text{ ENTER}
 \end{array}
 \]

RCL Recalls a variable.

Example
- Set C = 8.

 \[
 \begin{array}{c}
 8 \text{ STO } \alpha C \text{ ENTER} \\
 \text{ RCL } \alpha C \text{ ENTER}
 \end{array}
 \]

x/θ/T/n Enters a variable “x”, “θ”, “T”, or “n”. The variable is automatically determined according to the calculator’s coordinate setup: “x” for rectangular, “θ” for polar, “T” for parametric, “n” for sequential.

VARS Accesses the VARS menu.

{ } Enter braces to group numbers as a list.

ANS Recalls the previous answer. Use this key to incorporate the answer to the previous calculation into an expression.

Example
- Perform 3 × 3.

 \[
 \begin{array}{c}
 3 \times 3 \text{ ENTER} \\
 10 - \text{Ans} \text{ ENTER} \\
 \text{Ans} + 4 \text{ ENTER}
 \end{array}
 \]

Note: \(\text{ANS} \) can be considered as a variable; its value is automatically set when \(\text{ENTER} \) is pressed. If \(\text{ANS} \) is not empty, then pressing \(+, -, \times, \div \) will recall “Ans” and places it at the beginning of an expression. If “1” was the previous answer, then pressing \(+ 4 \) \(\text{ENTER} \) will result in “5”.

59
Chapter 3: Manual Calculations

ENTRY
Recalls the previous entry. This is useful when you want to modify the previous entry, rather than reenter the whole expression over.

Example
• Calculate 4×6.

\[
\begin{array}{c}
4 \times 6 \text{ ENTER} \\
24
\end{array}
\]

Next, calculate 4×8.

\[
\begin{array}{c}
\text{2ndF} \text{ ENTRY BS 8 ENTER} \\
32
\end{array}
\]

Note: Executed expressions are stored in a temporary memory in the executed order. If the temporary memory is full, the oldest data is automatically deleted. Be aware that ENTRY may not function on these occasions.

A maximum of 160 bytes can be stored in the temporary memory. The capacity may vary when there are division codes between expressions.

When switching from equation edit mode to one-line edit mode in the SETUP menu, all the numerical and graph equations stored in the temporary memory are cleared and cannot be recalled.

π
Enters “pi”. Pi is a mathematical constant, representing the ratio of the circumference of a circle to its diameter.

Example
• Enter “2π”. (=6.283185307)

\[
\begin{array}{c}
2 \text{ 2ndF π ENTER} \\
6.283185307
\end{array}
\]

CATALOG
Calls up the CATALOG menu. From the CATALOG menu, you can directly access various functions in the menus.

• Functions are listed in alphabetic order.
• Move the cursor using the ↑ / ↓ keys and press ENTER to access or enter the function.
• Press ALPHA and an appropriate alphabetic key (A to Z) to navigate the catalog.
• Press ALPHA ↑ / ALPHA ↓ to scroll the catalog page by page and press 2ndF ↑ / 2ndF ↓ to jump to the beginning or the end of the catalog.
• The functions accessible only from the CATALOG menu are:
 →a→b/c, →A.xxx, →b/c, e, int+, remain, rndCoin, rndDice, Simp, %.

Please refer to the following explanation.
Chapter 3: Manual Calculations

→aₐ/bₐ/c Converts an improper fraction to a mixed number.

Example
• Change \(\frac{12}{5} \) to a mixed number.

\[
\begin{align*}
12 \quad \left(\begin{array}{c}
\frac{b}{c}
\end{array} \right) \quad 5 \quad \rightarrow & \quad \text{→aₐ/bₐ/c} \\
\text{ENTER}
\end{align*}
\]

→A.xxx Converts a fraction to a decimal number.

Example
• Change \(\frac{12}{5} \) to a decimal number.

\[
\begin{align*}
12 \quad \left(\begin{array}{c}
\frac{b}{c}
\end{array} \right) \quad 5 \quad \rightarrow & \quad \text{→A.xxx} \quad \text{ENTER}
\end{align*}
\]

→b/c Converts a mixed number to an improper fraction.

Example
• Change \(2 \frac{2}{5} \) to an improper fraction.

\[
\begin{align*}
2 \quad \left(\begin{array}{c}
a \quad b \quad c
\end{array} \right) \quad 2 \quad \rightarrow & \quad \text{→b/c} \quad \text{ENTER}
\end{align*}
\]

Note: Above three conversions will not affect the ANSWER settings in the SETUP menu.
If a decimal number is not rational, fraction conversion will not function and display the answer in decimal format.

About →aₐ/bₐ/c and →b/c
• Only a value that can be converted to a fraction is displayed in a fraction form.
• Only a rational number within 10 digits can be simplified, if Manual is selected in the SETUP menu, item H SIMPLE. (Default setting is Auto for simplifying fractions.)
• A List or Matrix format can be used. (The elements of a list and matrix of the calculation results are in one line.)

\(e \) Enter the euler number.

Example

\[
e \quad \text{ENTER}
\]

2.718281828
int÷ Executes an integer division and returns its quotient and remainder.

Example
- Get a quotient and a remainder of $50 \div 3$.

$$50 \ \text{int}÷ \ 3 \ \text{ENTER}$$

* Quotient value is set to Ans memory and remainder is not stored.

remain Returns the remainder of a division.

Example
- Obtain the remainder when 123 is divided by 5.

$$1 \ 2 \ 3 \ \text{remain} \ 5 \ \text{ENTER}$$

rndCoin Returns a specified number of random integers to simulate a coin flip: 0 (head) or 1 (tail). The size of the list (i.e., how many times the virtual coin is thrown) can be specified. (The same as rndInt (0, 1, number of times))

Example
- Make the calculator flip a virtual coin 4 times.

$$\text{rndCoin} \ (\ 4 \) \ \text{ENTER}$$

rndDice Returns specified number of random integers (1 to 6) to simulate rolling dice. The size of the list (i.e., how many times the die is thrown) can be specified. (The same as rndInt (1, 6, number of times))

Example
- Make the calculator roll a virtual die 11 times.

$$\text{rndDice} \ (\ 11 \) \ \text{ENTER}$$

Note: The random functions, (rndCoin and rndDice) will generate different numbers every time.
Simp Simplifies a given fraction stored in the ANSWER memory.

- Set the **ANSWER** mode to **Mixed(Real)** or **Improp (Real)**, and the **SIMPLE** mode to **Manual** in the SETUP menu to use this key.

Specifying no common factor

Simplify the fraction using the lowest common factor other than 1.

Example

\[
\frac{1}{3} + \frac{5}{6} = \frac{11}{6}
\]

Simp (Simplified by 2, the lowest common factor of 12 and 6.)

\[
\frac{5}{6}
\]

Simp (Simplified by 3, the lowest common factor of 6 and 3.)

\[
\frac{1}{2}
\]

Specifying a common factor

Simplify the fraction using the specified common factor.

Example

\[
\frac{1}{3} + \frac{5}{6} = \frac{11}{6}
\]

Simp 6 (Manually specify 6, the Greatest Common Factor of 12 and 6, to simplify the fraction.)

\[
\frac{6}{12}
\]

\[
\frac{1}{2}
\]

Note: If the wrong number is specified for a common factor, an error will occur.

Simp is effective in a fraction calculation mode only (when the **ANSWER** mode is set to **Mixed(Real)** or **Improp(Real)** in the SETUP menu).
Chapter 3: Manual Calculations

% Set the preceding value as a percentage.

Example
• Get 25% of 1234.

\[
\begin{array}{c}
1 2 3 4 \times 2 5 \% \text{ ENTER} \\
\end{array}
\]

* Percentage must be a positive value equal to or less than 100.

Note: • The CATALOG commands and the equivalent keys:

<table>
<thead>
<tr>
<th>CATALOG command</th>
<th>Equivalent key</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>a^b</td>
</tr>
<tr>
<td>2</td>
<td>x^2</td>
</tr>
<tr>
<td>-1</td>
<td>x^{-1}</td>
</tr>
<tr>
<td>⇒</td>
<td>STO</td>
</tr>
<tr>
<td>C</td>
<td>MATH c nCr</td>
</tr>
<tr>
<td>P</td>
<td>MATH c nPr</td>
</tr>
<tr>
<td>d</td>
<td>ab%</td>
</tr>
</tbody>
</table>

• Sequen and Simul features can also be accessible from the CATALOG menu.
5. More Variables: Single Value Variables and LIST Variables

Additional single value variables (from A to Z, and θ) may be accessed. In addition, six LIST variables (from L1 to L6) are readily accessible through the second function.

To save a list of numbers, follow the procedure below:

1. On the Calculation screen, create a list of numbers (“1, 2, 3”, in this example). Separate numbers with a comma, and group the numbers with braces ({}).
2. Press [STO], then select one of the six LIST variables. To store the list in “L1”, press [2ndF] L1 to call up the LIST variable.
3. Pressing [ENTER] will store the list in the LIST variable. Note that this procedure will overwrite the list previously stored in the LIST variable.

Refer to Chapter 7 “LIST Features” to learn more about how LIST variables can be utilized.

6. TOOL Menu

The TOOL menu contains items to help calculating in different number systems, as well as to help solve both linear and polynomial equation. Press [2ndF] TOOL to access the TOOL menu. Press the [QUIT] key to escape from the menu.

A NBASE Calculations can be performed in different number base systems, while simultaneously converting the calculation result into hexadecimal, decimal, octal, and binary systems.

1. While this menu item A NBASE is selected, press the [ENTER] key. The NBASE tool opens, with the cursor set at HEX: (hexadecimal).
2. Type 1B \(\times 9 \), for example. When entering the hexadecimal B, simply press the \(B \) key; using the \(\text{ALPHA} \) key will call up the variable B instead.

3. When done entering the hexadecimal expression, press \(\text{ENTER} \). The calculation result will be displayed in three other number base systems, as well as in hexadecimal format.

Note: Numerical values in binary, octal, and hexadecimal modes can be expressed in the following number of digits:
- Binary: 16 digits
- Octal: 10 digits
- Hexadecimal: 10 digits

If you enter a number exceeding the range specified above for calculations or conversions, the calculator will return an error.

If the answer exceeds the above range, the calculator will also return an error.

Decimals can be used for DEC mode only (\(\cdot \) cannot be used in the other modes). If you convert decimal values to binary, octal, or hexadecimal number, the decimal part is discarded and only the integer part is converted.

When numerical values of binary, octal, and hexadecimal modes are negative, the display is switched to complements of 2.

B SYSTEM

With this tool, linear equations containing up to 6 unknown values (i.e., \(ax + by + cz + du + ev + fw = g \)) can be solved.

1. Press \(B \) to select **B SYSTEM**, and select the number of unknown values. For example, press \(2 \) if values \(x \) and \(y \) are unknown.

2. In the next screen, an equation \(ax + by = c \) is displayed, with an entry table for the known values — \(a, b, \) and \(c \).

3. Enter 2 sets of the known values, as shown in the figure. Pressing \(\text{ENTER} \) at each entry will store the value, and sets the cursor at the next entry area.
4. When done entering the known values, press \(\text{2ndF} \ [\text{EXE}] \). The calculation result will be displayed on the next screen. Pressing \(\text{CL} \) will bring back the previous entry screen.

5. To go back to the TOOL menu to perform another calculation, press \(\text{2ndF} \ [\text{TOOL}] \).

\[aX + bY = c \]
\[X = 4 \]
\[Y = 5 \]

\(\text{C POLY} \)

This tool is designed so that quadratic \((ax^2 + bx + c = 0) \) or cubic \((ax^3 + bx^2 + cx + d = 0) \) equation may be solved.

1. Press \(\text{C} \) to select \(\text{C POLY} \), and select the degree. For example, press \(\text{2} \) if a quadratic equation is desired.

2. In the next screen, an equation \(ax^2 + bx + c = 0 \) is displayed, with an entry area for the known values — \(a \), \(b \), \(c \), and \(d \).

3. Enter the values, as shown in the screen to the right. Pressing \(\text{ENTER} \) at each entry will store the value, and sets the cursor at the next entry area.

4. When done, press \(\text{2ndF} \ [\text{EXE}] \) to execute the calculation. The results (i.e. the \(x \)-intersects) will be displayed.

5. To enter a different set of numbers for \(a \), \(b \), and \(c \), press \(\text{CL} \) to go back to the previous screen. To select a different degree of polynomial, press \(\text{2ndF} \ [\text{TOOL}] \) to go back to the TOOL menu.

- If the solution cannot be displayed on the screen, a symbol will appear at the bottom left corner of the screen. Press \(\downarrow \) to scroll the screen.
Chapter 4
Graphing Features

1. Try it!

There are two taxi cab companies in your city, Tomato Cab and Orange Cab, with different fare systems. The Tomato Cab charges 2.00 Euro upon entering the taxi cab, and 1.80 Euro for each mile the taxi travels. The Orange Cab, on the other hand, charges 3.50 Euro plus 1.20 Euro per mile. This means that taking the Tomato Cab will initially cost less than going with the Orange Cab, but will be more expensive as you travel longer distances.

Suppose you need to go to a place 3 miles away from where you are now. Which cab company should you take to save money?

Two math expressions can be derived from the above fare systems. If “y” represents the cost, while “x” represents the mileage, then:

\[y = 2 + 1.8x \] Tomato Cab’s fare system

\[y = 3.5 + 1.2x \] Orange Cab’s fare system

Use the calculator’s graphing capabilities to figure out the approximate point where the Orange Cab gets ahead of the Tomato Cab, in terms of cost performance.

CONCEPT

1. By using two linear graphs, the approximate crossing point can be found.

2. The exact crossing point can be found with the TABLE function.
Chapter 4: Graphing Features

PROCEDURE

1. Press [Y=] to enter the Graph Equation window. Six equation entry areas appear, from “Y1=” to “Y6=”. Since we need only two equations in this exercise, let’s use “Y1=” and “Y2=”.

2. By default, the cursor should be placed on the right side of the “Y1=” equation, next to the equal sign. If this is not so, use the cursor keys to bring the cursor to the “Y1=” line, then press the [CLEAR] key to clear any entries. The cursor will automatically be placed to the right of the equal sign.

3. Enter the first equation, “2 + 1.8X”, to represent the Tomato Cab’s fare system.

 Use the [X,T,θ,n] key to enter the “x”, representing the distance in miles.

4. When the equation line is complete, press [ENTER]. The first equation is now stored, and the cursor automatically jumps to the second line, where the second equation can be entered.

5. At the second line, press [CLEAR] to clear any entries, then enter “3.5 + 1.2X” to represent the Orange Cab’s fare system. When done entering the equation, press [ENTER]. The two equations are now ready to graph.

6. Press [GRAPH] to draw the graphs. To draw a graph, “=” must be highlighted. If not, move the cursor to “=” of the targeted equation and press [ENTER] to draw a graph, and press [ENTER] again not to draw a graph.

Graph Basics

The graph examples in this exercise are called X-Y graphs. An X-Y graph is quite useful for clearly displaying the relationship between two variables.
7. Let’s take a look at the graph. The vertical axis represents the Y value, while X is represented by the horizontal axis. It appears that the two diagonal lines cross at the point where the X value is somewhere between 2 and 3, indicating that Orange Cab costs less than the other, after 3 miles of traveling.

8. Next, press [TABLE] to find the values per graph increment. When the traveling distance is 2 miles, the Tomato Cab charges 30 cents less overall than the Orange Cab, but it costs 30 cents more at 3 miles. To make the X increment smaller, press [2ndF] [TBLSET].

9. When the Table setting window appears, move the cursor down to “TBLStep”, type [5], and press [ENTER]. Now the Y values will be sampled at every 0.5 mile.

10. Press [TABLE] to show the table again. It indicates that when the X value is 2.5, both Y1 and Y2 values are 6.5. It is now clear that if you are traveling 2.5 miles or more, the Orange Cab costs less.
2. Try it!

You have just opened your own bank account, with an initial deposit amount of 2000 Euro. Suppose your monthly income is 3000 Euro, and you will spend 60 percent of what you have in the account every month, how much will your balance be after one year? How much will you have in the account, 6 months from now?

The example can be expressed as a sequential equation, as follows:

\[u_n = u_{n-1} \times (1 - 0.6) + 3000 \]

where \(u_n \) is the balance of the current month and \(u_{n-1} \) is the balance of the previous month, and \(n \) is the month.

CONCEPT

1. Grasp the idea of sequential equations.
2. Use the graph tracing function to obtain approximate values.
Chapter 4: Graphing Features

PROCEDURE

1. First, let us set the calculator to the appropriate graphing coordinate mode. Press \(^{2}\text{ndF} \text{ SETUP}\) to enter the \text{SETUP} menu, press \(\text{E}\) to select \text{E COORD}, then press \(4\) to select \text{4 Seq}, and press \(\text{C}\).

2. We will use the “Time” sequential graph type within the \text{FORMAT} menu. Press \(^{2}\text{ndF} \text{FORMAT}\), press \(\text{G}\) to select \text{G TYPE}, and \(2\) to select \text{2 TIME}.

3. Then press \(\text{Y=}\). The Graph Equation Entry window will open.

4. Enter a new equation set \(u(n-1) \times (1 - 0.6) + 3000\) for \(u(n)=\). Press \(^{2}\text{ndF} \text{u}\) (7) to enter \(u\) and press \(\text{x} \Theta \text{Tim}\) for \(n\). Press \(\text{ENTER}\) when done entering.

 \text{Note:}\hspace{1em} Press \(\text{CL}\) to clear the previous entry. Using a capitalized “U” or “N” here will result in an error upon pressing the \(\text{GRAPH}\) key.

5. On the second entry row \((u(n\text{Min}) =)\), enter 2000, then press \(\text{ENTER}\).

 The figure is automatically enclosed by braces.

6. The \(v\) and the \(w\) entry sets will not be necessary in this case, so press \(\text{CL}\) to clear, then press \(\text{ENTER}\) to move one row down. Repeat until the four unnecessary entry rows are cleared.

7. Press \(\text{GRAPH}\) to draw the graph.

8. If the line is outside of the graph’s range, press \(\text{ZOOM}\) then \(1\) to select automatic zoom.

 This will only display a small portion of the graph, so the graph’s range will need to be changed.
9. Press [WINDOW]. Find nMax= and change the value to 15 (default: 10). Next, find Xmax= and change the value to 15 too (default: 10).

11. Use the graph trace function by pressing [TRACE]. As \(\bullet \) is pressed several times, the n value (=X value, since the graph is set to “Time” format) increases, and the Y value (the balance of your account) will change. Find the Y value when the n value is 6 (after 6 months) as well as the value when n=12 (after 12 months = 1 year).

You can obtain the value directly from the CALC menu.

1. Press [2ndF] [CALC] and select 1 VALUE.
 \(n= \) will appear on the bottom line of the screen.

2. Enter the \(n \) value of 6, and press [ENTER].

3. Follow the procedure 1 to 2 to obtain the Y value for 12.
3. Explanations of Various Graphing Keys

The explanations in this section are based on the rectangular coordinates (COORD RECT).

Y= Displays the Graph Equation window. Up to 10 different equations can be entered.

After the graph expression is entered, press [ENTER] to store the equation.

= The expression can be represented as a graph.

= The expression cannot be drawn as a graph.

- Move the cursor pointer to the “=” sign and press [ENTER] to change between to-draw and not-to-draw.

Note: To switch the window back to the calculation screen, simply press the [2nd] key.

GRAPH: Draws a full-screen graph based on the equation(s) entered in the Graph Equation window. To cancel the graph drawing, press [ON].

Note: If no equations are entered in the Graph equation window, only the vertical (Y) and horizontal (X) axis will be displayed upon pressing the [GRAPH] key.

TABLE: Displays the graph values in a table. The default sample increment value of the graph’s X axis is “1”. See “11. Tables” on page 93.

WINDOW: Displays the graph window setup. The setup values — the minimum/maximum X/Y values, and X/Y-axis scale — can be changed manually:

1. While the graph is displayed on the screen, press the [WINDOW] key. The following window appears, with the cursor set at “Xmin=”.
2. The required X-minimum value can be entered here. This limits the left boundary of the graph window. For example, if “Xmin=” is set to “0”, then the portion of the graph’s Y-axis to the left will not be displayed.
3. Once the “Xmin=“ value is entered (“0”, for example), press [ENTER]. The left limit of the graph is now set, and the cursor moves to “Xmax=”.
4. Now the right boundary of the graph can be set. Enter the required value here (“3”, for example), and press [ENTER].
Chapter 4: Graphing Features

Note: The “Xmax=” value cannot be set equal to or smaller than the value of “Xmin”. If so done, the calculator will display an error message upon attempting to redraw the graph, and the graph will not be displayed.

5. The next item “Xscl=” sets the frequency of the X-axis indices. The default value is “1”. If, for example, the value is set to “0.5”, then indices will be displayed on the X-axis at increments of 0.5. Enter the required “Xscl=” value (“0.5”, for example), and press [ENTER].

6. The “Ymin=”, “Ymax=”, and “Yscl=” can be set, as was described for “Xmin=”, “Xmax=”, and “Xscl=” above.

7. When done, press the [GRAPH] key to draw the graph with the newly configured window setup.

See “10. Setting a Window” on page 92.

ZOOM: Displays the ZOOM menu. Within the ZOOM menu, various preferences can be set for the graph appearance on zooming in/out. The menu items with each function and the sub-menu items are described below:

A ZOOM

1 Auto According to the WINDOW setup, the graph will be zoomed in by adjusting the “Ymin” (the minimum Y value) and “Ymax” (the maximum Y value) according to the “Xmin” (the minimum X value) and “Xmax” (the maximum X value). When this item is selected, the graph will automatically be redrawn.

Note: The “Auto” sub-menu item is directly affected by how the WINDOW items are set up. Refer to the [WINDOW] key section in this chapter to learn how to set up the Xmin and Xmax items.

2 Box A box area can be specified with this sub-menu tool so that the area within the box will be displayed full screen.

To select a box area to zoom:

1. While the ZOOM menu item is selected within the ZOOM window, press [2] to select 2 Box.

2. The graph appears on the screen. Use the cursor keys to position the cursor at a corner of the required box area. Press [ENTER] to mark the point as an anchor.
3. Once the initial anchor is set, move the cursor to a diagonal corner to define the box area. When the required area is squared off, press [ENTER]. If a mistake is made, the anchor can be removed by pressing the CL key.

4. The graph will automatically be redrawn.

3 In A zoomed-in view of the graph will be displayed, sized according to the B FACTOR set up under the ZOOM menu. For example, if the vertical and horizontal zoom factors are set to “2”, then the graph will be magnified two times. Refer to the B FACTOR segment of this section for more information.

4 Out The graph image will be zoomed out according to the B FACTOR setup under the ZOOM menu.

5 Default The graph will be displayed with default graph setting (Xmin = -10, Xmax = 10, Xscl = 1, Ymin = -10, Ymax = 10, Yscl = 1)

6 Square Set the same scale for X and Y axes. The Y-axis scale is adjusted to the current X-axis scale. The graph will be redrawn automatically.

7 Dec Sets the screen dot as 0.1 for both axes. The graph will then be redrawn automatically.

8 Int Sets the screen dot as 1.0 for both axes. The graph will then be redrawn automatically.

9 Stat Displays all points of statistical data set.
Chapter 4: Graphing Features

B FACTOR
Use this menu to set the vertical and horizontal zooming factor. The factor set under this menu directly affects the zoom rate of the 3 In and 4 Out sub-menu tools under the ZOOM menu, as described above.

To set the zooming factor, do the following:

1. Within the \textbf{B FACTOR} menu, press \textbf{ENTER} to activate the setup tool.

2. When the “Zoom factor” window appears, the cursor is automatically placed at “X_Fact=”. The default zoom factor is 4; enter the required value here.

3. Pressing \textbf{ENTER} after entering a value will switch the cursor position to “Y_Fact=”. Enter the required zooming factor, and press \textbf{ENTER}.

4. To go back to the ZOOM menu, press the \textbf{ZOOM} key.

C POWER

\begin{itemize}
 \item \textbf{1} \(x^2\) Use this zooming tool when the equation contains a form of “\(x^2\)”.
 \item \textbf{2} \(x^{-1}\) Use this zooming tool when the equation contains a form of “\(x^{-1}\)”.
 \item \textbf{3} \(\sqrt{x}\) Use this tool to zoom correctly when the equation contains a form of “\(\sqrt{x}\)”.
\end{itemize}

D EXP

\begin{itemize}
 \item \textbf{1} 10^x Use this tool when the equation contains a form of “10^x”.
 \item \textbf{2} \(e^x\) Use this tool when the equation contains a form of “\(e^x\)”.
 \item \textbf{3} \(\log X\) Use this tool when the equation contains a form of “\(\log x\)”.
 \item \textbf{4} \(\text{In} X\) Use this tool when the equation contains a form of “\(\text{In} x\)”.
\end{itemize}

E TRIG

\begin{itemize}
 \item \textbf{1} \(\sin X\) Use this when the equation contains a sine function.
\end{itemize}
Chapter 4: Graphing Features

2 cos X Use this when the equation contains a cosine function.
3 tan X Use this when the equation contains a tangent function.
4 sin^{-1} X Use this when the equation contains an arc sine function.
5 cos^{-1} X Use this when the equation contains an arc cosine function.
6 tan^{-1} X Use this when the equation contains an arc tangent function.

F HYP
1 sinh X Use this when the equation contains a hyperbolic sine function.
2 cosh X Use this when the equation contains a hyperbolic cosine function.
3 tanh X Use this when the equation contains a hyperbolic tangent function.
4 sinh^{-1} X Use this when the equation contains an inverse hyperbolic sine function.
5 cosh^{-1} X Use this when the equation contains an inverse hyperbolic cosine function.
6 tanh^{-1} X Use this when the equation contains an inverse hyperbolic tangent function.

G STO
Under this menu item there is one tool that enables the storing of graph window settings.

1 StoWin By selecting this sub-menu item, the current graph window setup will be stored.

Note: The actual graph image will not be stored with this tool.

H RCL
Under this menu item there are two tools that enable the recalling of the previous graph window setup:

1 RclWin On selecting this sub-menu item, the previously stored window setup will be recalled, and the graph will be redrawn accordingly. If no window setup has been stored previously, the default graph window setup will be used.
Chapter 4: Graphing Features

4. Graph Modes

• This calculator has four graph modes (rectangular coordinate graph, parametric coordinate graph, polar coordinate graph, and sequence graph):

• To select a mode, use the SETUP menu (E COORD).

<table>
<thead>
<tr>
<th>Rectangular (X-Y) coordinates</th>
<th>Parametric coordinates</th>
<th>Polar coordinates</th>
<th>Sequence coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1=</td>
<td>X1T=</td>
<td>R1=</td>
<td>u(t)</td>
</tr>
<tr>
<td>Y2=</td>
<td>Y1T=</td>
<td>R2=</td>
<td>w(t)</td>
</tr>
<tr>
<td>Y3=</td>
<td>X2T=</td>
<td>R3=</td>
<td>\omega(t)</td>
</tr>
<tr>
<td>Y4=</td>
<td>Y2T=</td>
<td>R4=</td>
<td>w(t) \omega(t)</td>
</tr>
<tr>
<td>Y5=</td>
<td>X3T=</td>
<td>R5=</td>
<td>w(t) sin t \omega(t)</td>
</tr>
<tr>
<td>Y6=</td>
<td>Y3T=</td>
<td>R6=</td>
<td>w(t) cos t \omega(t)</td>
</tr>
</tbody>
</table>

2 PreWin

On selecting this sub-menu item, the window setup prior to the current zoom setup will be recalled, and the graph will be redrawn accordingly.

TRACE:

Press this button to trace the graph drawn on the screen, to obtain the X-Y coordinates:

1. While the graph is displayed, press the TRACE key. The cursor appears, flashing on the graph line, with the present X-Y coordinates.

2. Trace the graph using the [←] or [→] keys. The [←] key decreases the value of x, while the [→] key increases it.

3. Pressing the TRACE key again will redraw the graph, with the cursor at the center of the screen. If the cursor is moved beyond the range of the screen, pressing the TRACE key will redraw the screen centered around the cursor.

4. When done, press the [CL] key to escape the tracing function.

If more than one graph is displayed on the screen, use the { or } keys to switch the cursor from one graph to the other.

Note: If the TRACE key is not activated, the cursor will not be bound to the graph. Pressing the [←], [→], [↑], or [↓] keys will position the free-moving flashing cursor on the graph display.
Chapter 4: Graphing Features

5. Graphing Parametric Equations

A two-dimensional parametric equation assumes that both X and Y are represented by functions in a third variable T. When set in parametric graphing mode, the calculator automatically sets up the Graph Equation Entry screen to take one set of X and Y per each graph, with the equation’s right side variable to be set as “T”.

Example
• Draw a graph: \(x(t) = 16\cos(t) \), \(y(t) = 9\sin(t) \).

1. Press \(\boxed{2nd} \) \(\boxed{SETUP} \) to enter the SETUP menu.
2. Press \(\boxed{E} \) to select \(\boxed{E} \) \(\boxed{COORD} \), then \(\boxed{2} \) to select \(\boxed{2} \) \(\boxed{Param} \).
 Be sure that the other settings are as shown on the right.
 To exit the SETUP menu, press \(\boxed{CL} \).
3. Press \(\boxed{Y=} \) to go to the Graph Equation Entry window.
4. Enter \(16\cos(t) \) for \(X1T= \).
 Press \(\boxed{\text{ENTER}} \) when done entering.
5. Enter \(9\sin(t) \) for \(Y1T= \). Press \(\boxed{\text{ENTER}} \) when done entering.

Note:
The right side variable is automatically set to “T”. When the \(\boxed{x:t:n} \) key is pressed within the Graph Equation Entry window, it will enter the variable “T”.

6. Press \(\boxed{\text{GRAPH}} \) to draw the graph.
7. If the graph line extends beyond the screen, press \(\boxed{\text{ZOOM}} \) and select \(\boxed{A} \) \(\boxed{ZOOM} \) then \(\boxed{1} \) \(\boxed{AUTO} \).
 Use \(\boxed{3} \) \(\boxed{IN} \) or \(\boxed{4} \) \(\boxed{OUT} \) of the \(\boxed{A} \) \(\boxed{ZOOM} \) to adjust the drawing size.

You can also set the drawing size in the WINDOW menu by determining the maximum and minimum values of T, X and Y.
Chapter 4: Graphing Features

6. Polar Graphing

Polar coordinates are a different method of specifying a point in two dimensions; the location of the point is described by the distance from the X-Y intersect “r”, and its elevation angle “θ”.

Example

• Draw a graph: \(r = 16\cos(\theta)\sin(\theta) \).

1. Press \(\text{2nd} \) \(\text{SETUP} \). The SETUP menu appears.

2. Press \(\text{E} \) to select \(\text{ECOORD} \), then press \(3 \) to select \(3 \) \text{Polar} \. Be sure that the other settings are as shown on the right. To exit the SETUP menu, press \(\text{CL} \).

3. Press \(Y= \). The Graph Equation Entry window will appear.

4. At the first entry row \(\text{R1=} \), enter \(16\cos(\theta) \times \sin(\theta) \). Press \(\text{ENTER} \).

5. Press \(\text{GRAPH} \) to draw the graph. Press \(\text{ZOOM} \), then press \(6 \) to select \(6 \) \text{Square} \.
7. Graphing Sequences

The Setup setting COORD Seq enables you to input and draw up to three explicit or recursive sequence equations \(u(n) \), \(v(n) \), \(w(n) \).

Variables \(u \), \(v \) and \(w \) are entered as \(\text{2ndF} \ 7 \), \(\text{2ndF} \ 8 \), and \(\text{2ndF} \ 9 \) respectively. Use \(\text{xTn} \) to enter the natural number \(n \).

A sequence is an ordered, numbered series of numbers. Sequence equations may be recursive or explicit. In an explicit equation, only the variable \(n \) is used to calculate the \(n \)th sequence element, and in a recursive equation only the value of \(u(n-1) \).

Using the sequence \(\{1, 2, 4, 8, 16, 32, \ldots \} \) as an example, this means:

\[
\begin{align*}
\text{explicit representation} \\
\Rightarrow u(n) &= 2^n \\
\text{recursive representation} \\
\Rightarrow u(n) &= 2 \times u(n-1)
\end{align*}
\]

In \(\text{2ndF} \ \text{FORMAT} \ \text{G} \) (TYPE) five different settings are possible for drawing sequences. The default setting is \(\text{Time} \).

If the expected graph is not drawn or the error message “Invalid” appears this may be caused by an incorrect setting for \(\text{TYPE} \).

For base \(n \) (Time)
The values of \(n \) are plotted along the X-axis and the values of the sequence elements along the Y-axis.

uv setting
\(u(n) \) is plotted along the X-axis, and \(v(n) \) along the Y-axis. The \(\text{uw} \) and \(\text{vw} \) settings are analogous.

Web setting
Here, the X-axis represents \(u(n-1) \) and the Y-axis \(u(n) \). When using this setting, a recursive sequence representation is mandatory.
Example 1: Sequence representation when using the Time default setting

Draw the sequence $u(n) = 2^n$

First, ensure that the graphic coordinates are set to sequential (See page 72).

1. Use [2ndF] FORMAT to navigate to the Format menu.
2. Select G (TYPE) 2 (Time).
3. By pressing $Y=$ you now enter the input window for sequence equations.
 The cursor is placed on the first line, $u(n)$; pressing CL will delete existing entries and the cursor will be moved to the right side of the equation.
4. Input 2^n. Use the $X^{th}/T/im$ key to input n. And input 1 for $u(nMin)$.
5. Select [ZOOM] A 1 for the automatic zoom function in order to set suitable window settings automatically.
6. Using [TRACE], you can now read concrete values of the sequence.
Chapter 4: Graphing Features

Example 2: Representation using the uv setting

Compare \(2 \times 0.9^{(n-1)}\)
with the sequence previously input.

Sequence \(2^n\) is still stored in \(u(n)\) from the previous example. Now, sequence \(v(n)\) is to be defined and the representation type to be changed.

1. Press \(\text{2ndF FORMAT G}\)
 \(\text{3}\) to select \(uv\).

2. Press \(\text{Y=}\) and input the equation \(2 \times 0.9^{(n-1)}\) in the \(v(n)\) line. And input 1 for \(v(nMin)\).

3. Select \(\text{ZOOM A 1}\) for the automatic zoom function in order to set suitable window settings automatically. Using \(\text{TRACE}\), you can now read concrete values of both sequences.

If a third sequence equation is input in \(w\) this can be compared with the first sequence using TYPE setting \(4 \text{uw}\) and, using setting \(5 \text{vw}\), with the second sequence.

Note: Attempting to compare a sequence with an incomplete entry will result in an error.
Example 3: A representation using the Web TYPE setting

View the sequence $u(n) = u(n-1) + 100$ by comparing the sequence elements $u(n)$ with the predecessor elements $u(n-1)$.

1. Press 2ndF FORMAT G 1 to select Web.

2. Press Y= and input the equation in the $u(n)$ line. Because this is a recursive representation, a value for $u(nMin)$ must be input.

3. If the lower four lines still contain entries, move the cursor down and delete them using CL.

4. Select ZOOM A 1 for the automatic zoom function in order to set suitable window settings automatically. Using TRACE, you can now read concrete values of the sequence.
8. The CALC Function

The **CALC** function utilizes the entered graph equation to calculate values. In conjunction with the 4 graph coordinates, it can be called up anywhere. Note however that the **CALC** function will not do anything if no graph equation has been entered or specified.

The following is an example that uses the previously entered polar graph equations above.

1. First, verify the graph coordinate mode by pressing \(\text{2ndF} \) \(\text{SETUP} \); check to see if **E COORD** is set to **Polar**. If not, this will need to be changed accordingly. Also, make sure the angle unit **B DRG** is set to **Rad**. Otherwise the graph will not be drawn correctly.

 Press \(\text{2ndF} \) \(\text{FORMAT} \), press \(\text{F} \) to select **F CURSOR**, and \(\text{2} \) to select **2 PolarCoord**.

2. Press \(\text{Y=} \) to verify the previously entered polar graph equation, then press \(\text{GRAPH} \) to draw the graph. Adjust the view by using \(\text{ZOOM} \) menu items.

3. Press \(\text{2ndF} \) \(\text{CALC} \).

4. Press \(\text{1} \) to select **1 Value**. The graph is drawn back on the screen again, with the \(\theta = \) prompt visible at the bottom left side of the screen.

5. Enter the \(\theta \) value at the prompt. Enter \(\pi \), for example. Be aware that \(\theta \) cannot be more than \(2\pi \) (\(2\pi \) radians = 360 degrees).

6. Upon pressing \(\text{ENTER} \), the radian \(r \) coordinate will be calculated.
Specific sub-menus

Note: When coordinate system is Polar, Param or Seq, only 1 Value is selectable in the CALC menu.

1 Value With this sub-menu tool, the Y value can be obtained by entering an X value. The flashing graph cursor will then be placed in that position on the graph. If more than one graph equation is set, use the ▲ or ▼ keys to switch to the equation you wish to work with.

Note: If the entered X value is incalculable, an error message will be displayed. Also, if the Y value exceeds the calculation range, then “----” will be displayed instead.

2 Intsect With this tool, the intersection(s) of two or more graphs can be found, where the flashing cursor will be placed. When the intersection is found, then the X-Y coordinates of the intersection will be displayed at the bottom of the screen. If there is more than one intersection, the next intersection(s) can be found by selecting the tool again.

Note: If there is only one graph equation entered there will be no other graph(s) to form an intersection, so selecting this tool will result in an error.

3 Minimum Finds the minimum of the given graph, and places the flashing cursor at that position.

Note: If the given graph has no minimum value, an error message will be displayed. If there are several minimum values, please use this function again.
4 Maximum Finds the maximum of the given graph, and places the flashing cursor at that position.

Note: If the given graph has no maximum value, an error message will be displayed. If there are several maximum values, please use this function again.

5 Y_zero Finds an Y_zero (a intersect point or a contact point of the graph on the X-axis) of the given graph, and places the flashing cursor at that position. If there is more than one Y_zero, the next Y_zero can be found by selecting the tool again.

Note: If the graph has no Y_zero, an error message will be displayed.

6 Y_Incpt Finds an Y-intercept of the given graph, and places the flashing cursor at that position.

Note: If the graph has no Y-intercept, an error message will be displayed.

Note: The result may be different when the ZOOM function is used.

7 Inflec Calculates the inflection point of the given graph and moves the cursor to that point.

Example
1. Enter the graph equation
 \[Y1 = x^3 - 3x^2 + 2. \]
2. Press \(\text{2ndF} \) \{CALC\} 7.
Chapter 4: Graphing Features

8 \int dx \quad \text{Calculates the numerical integral of equation and display it on a graph.}

Example

1. Enter the graph equation.
 \[Y1 = -x^2 + 5. \]

2. Press \[\text{2ndF CALC 8} \].

3. Move the cursor to the point of lower and press \[\text{ENTER} \].
 - The line is drawn between the point of lower and X axis.

4. Move the cursor to the point of upper and press \[\text{ENTER} \].
 - The calculation result is displayed and shaded on the graph.

Note: In the step 3 and 4, it is also possible to input the X value and press \[\text{ENTER} \].
Chapter 4: Graphing Features

9. Format Setting

You can set up the Graph screen format from the FORMAT menu.
Press \(\text{2ndF} \) FORMAT to display the Graph format menu.

Specific sub-menus

Note: **G TYPE** appears only when the sequence coordinate graph mode is selected.

A Display the current FORMAT settings. The default setting is:

- **EXPRES ON** (for the graph equation to be displayed on the graph)
- **Y’ OFF** (for displaying numeric derivatives on the graph)
- **AXIS ON** (for displaying the X/Y axis on the graph)
- **GRID OFF** (for displaying a grid on the graph)
- **CURSOR RectCoord** (for displaying the cursor location)

B **EXPRES** This sets whether or not graph equations are displayed on the graph screen (in the trace mode, etc.). To not display the equations on the graph, select **2 OFF** by pressing \(2 \) at this menu item.

C **Y’** The numeric derivative \((dx/dy)\) can be displayed on the graph screen (in the trace mode, etc.). To activate this function, select **1 ON** by pressing \(1 \) at this menu item.

D **AXIS** The graph axis can be set invisible with this menu item. To hide the X/Y axis of the graph, select **2 OFF** by pressing \(2 \) at this menu item.

E **GRID** The graph display can be backed with an X-Y grid. To show the grid on the graph, select **1 ON** by pressing \(1 \) at this menu item.

F **CURSOR** The coordinate system that indicates the location selected by the trace or other function can be selected from **1 RectCoord** (Rectangular coordinates) or **2 PolarCoord** (Polar coordinates) (In the parametric system, the T indication is added.)
Chapter 4: Graphing Features

G TYPE
This menu is only active when the sequence coordinate graph mode is selected in the SETUP menu. The **G TYPE** menu will not appear in the other modes.

1 **Web**
A web graph plot mode where \(x = u(n-1) \) and \(y = u(n) \).

2 **Time**
Time graph plot mode where \(x = n \) and \(y = u(n), v(n), w(n) \). (default)

3 **uv**
A uv mode where \(x = u(n) \) and \(y = v(n) \).

4 **uw**
A uw mode where \(x = u(n) \) and \(y = w(n) \).

5 **vw**
A vw mode where \(x = v(n) \) and \(y = w(n) \).

Note: \(u(n), v(n) \) and \(w(n) \) indicate the \(n \)-th term of the sequences.
10. Setting a Window

The WINDOW key displays the graph window setup. The display will differ according to the selected coordinate system.

Rectangular coordinate system

- **Xmin/Xmax**: Minimum and maximum values of x-axis, respectively
- **Xscale**: Scale of x-axis
- **Ymin/Ymax**: Minimum and maximum values of y-axis, respectively
- **Yscale**: Scale of y-axis

Parametric coordinate system

- **Tmin/Tmax**: Minimum and maximum values for T, respectively
- **Tscale**: Cursor pointer step value for tracing
- **Others**: Same as rectangular coordinate system

Polar coordinate system

- **θmin/θmax**: Minimum and maximum angle for θ, respectively
- **θstep**: Cursor pointer step value for tracing
- **Others**: Same as rectangular coordinate system

Sequential coordinate system

- **nMin/nMax**: Minimum and maximum value for n, respectively
- **PlotStart**: Starting value of sequential variable n
- **PlotStep**: Increments of sequential variable n
- **Others**: Same as rectangular coordinate system
11. Tables

The calculator enables you to illustrate the changes using the equation and graph you have input. It also has tables for showing a list of X and Y values. Each column item can display up to 7 digits, including a sign and/or a decimal point.

There are four kinds of tables available corresponding to the coordinate system.

Rectangular coordinate system

- The variable X is displayed in the left end column.
- The columns Y1 to Y3 are displayed on the first screen.
- Press \[\text{ gauche} \] to \[\text{ droite} \] to horizontally scroll the table. (The variable X is always displayed in the left end column.)
- The 10-digit value in the column where the cursor is currently located is displayed on the bottom line of the screen.
- Move the cursor using \[\text{ gauche} \] \[\text{ droite} \] \[\text{ haut} \] \[\text{ bas} \].
- Non-input equation numbers and equations invalid for graphing will not be displayed in the above table.

Parametric coordinate system

- The variable T is displayed in the left end column.
- The columns X1T, Y1T, and X2T are displayed on the first screen.
- Press \[\text{ gauche} \] \[\text{ droite} \] to horizontally scroll the table.
- The 10-digit value in the column where the cursor is currently located is displayed on the bottom line of the screen.
- Move the cursor using \[\text{ gauche} \] \[\text{ droite} \] \[\text{ haut} \] \[\text{ bas} \].
- Non-input equation numbers and equations invalid for graphing will not be displayed in the above table.
Chapter 4: Graphing Features

Polar coordinate system

- The variable θ is displayed in the left end column.
- The columns θ, R1 to R3 are displayed on the first screen.
- Press \leftarrow \rightarrow to horizontally scroll the table.
- The 10-digit value in the column where the cursor is currently located is displayed on the bottom line of the screen.
- The cursor can be moved using \leftarrow \rightarrow \uparrow \downarrow.
- Non-input equation numbers and equations invalid for graphing will not be displayed in the above table.

Sequential coordinate system

- The variable n is displayed in the left end column.
- Tables values $u(n)$, $v(n)$, and $w(n)$ are simultaneously displayed.
- The 10-digit value in the column where the cursor is currently located is displayed on the bottom line of the screen.
- The cursor can be moved using \leftarrow \rightarrow \uparrow \downarrow.
- Non-input equation numbers and equations invalid for graphing will not be displayed in the above table.

Setting a table

- To display the table, press TABLE.
- Table setting allows you set how to input data for a table.
- Press 2ndF TBLSET to enter the table setting screen.
- The cursor is initially located at Auto, showing the variable input method.

Auto: Automatically creates a table based on the graph equations and given TableStart and TableStep values.

User: Displays a blank table. As you input values for variable columns, table values are automatically calculated by the equation. Thus, although TableStart and TableStep inputs can be made when selecting User, set values will be ignored.
Chapter 4: Graphing Features

• Press \(\leftarrow \) or \(\rightarrow \) to switch between Auto and User.
• TableStart is a start value of the variable in the table, and TableStep is a step value of the variable. Both are numeric values.

Example
Automatically create a table starting from -5 with a step of 1 in the X-Y coordinate after equations, based on “Y1 = X”, “Y2 = X^2”, and “Y3 = -X^2 + 3”.
1. Press \(\text{2ndF} \), TBLSET and \(\downarrow \) (-) 5 \(\text{ENTER} \) \(\text{1 ENTER} \).
2. Press TABLE.

* If the cursor is on the top or bottom line of the table, \(\uparrow \) or \(\downarrow \) can still be used. The table contents will move to become visible in the display area.

Example
Create a table in the User mode under the above conditions.
1. Press \(\text{2ndF} \), TBLSET and \(\downarrow \) \(\text{ENTER} \) \(\downarrow \) \(\text{0 \text{ENTER}} \)
 \(\text{1 ENTER} \).
2. Press TABLE.
Blank table will appear.
3. Press 2 \(\text{ENTER} \) (-) 3 \(\text{ENTER} \) to enter X values.

* An automatically created table in the User mode cannot be scrolled vertically.

Note: While the table is in the User mode, a selected row can be deleted by pressing \(\text{DEL} \).
12. The DRAW Function

With the DRAW function, lines, circles, graphs, and pixel points can be added to the graph window. The DRAW menu also contains configuration tools for the ordinary graphs entered in the Graph Equation Entry window: line types, shading, and visibility status of each graph.

Press \(\boxed{2ndF} \) **DRAW** to enter the DRAW menu.

Note: When entering coordinates, the DRAW function assumes that rectangular coordinates will be entered. The exception to this is for \(\text{PxlON}(), \text{PxlOFF}(), \text{PxlCHG}(), \text{and PxlTST}() \), all within the B POINT menu item.

A DRAW
The tools in this menu add lines, circles, additional graphs and text on the graph screen.
The tools below can be accessed from the GRAPH window, or any other windows such as the Graph Equation Entry window and Calculation screen. Most of these tools, such as **Line**, can be entered directly onto a graph from the cursor point.

01 ClrDraw
Clears all items on the graph window EXCEPT for the graphs entered via the Graph Equation Entry window.

1. From the GRAPH window, press \(\boxed{2ndF} \) **DRAW** to enter the DRAW menu.

2. Press \(\boxed{A} \) to select **A DRAW**, then press \(\boxed{0} \) \(\boxed{1} \) to select **1 ClrDraw**.

or

1. From the Calculation screen, press \(\boxed{2ndF} \) **DRAW** \(\boxed{A} \) \(\boxed{0} \) \(\boxed{1} \).

“ClrDraw” will appear.

2. Press [ENTER].

All the items on the graph will be deleted and the message “Done” will appear.
Chapter 4: Graphing Features

02 Line(Draws a line according to the given X-Y coordinates of a start/end point.

Note: This tool can be used with any type of graph.

From the Calculation screen

Line(x-coordinate of start point, y-coordinate of start point, x-coordinate of end point, y-coordinate of end point [,0])

Example

1. Select the DRAW menu. Select A DRAW in the menu, then select 02 Line(.

"Line(" will appear.

Suppose you wish to draw a line, starting from an X-Y coordinate (1,2) to end at (8,8).

2. Enter "1,2,8,8" right after the "Line(" object, then close the expression with).

3. Press ENTER.

The GRAPH window will appear with the specified line drawn on the graph.

Note: If you enter 0 for the 5th element of Line(function, (e.g. Line(1,2,8,8,0)) and press ENTER, you can clear the specified line.

From the GRAPH window

Line(1. Press 2ndF DRAW to enter the DRAW menu.
Chapter 4: Graphing Features

2. Press \(\text{A} \) to select \(\text{A DRAW} \), then press \(\text{0 2} \) to select \(\text{02 Line} \). The \(\text{GRAPH} \) window reappears, with the coordinate of the cursor showing at the bottom of the screen.

Note: To change the cursor coordinate system, use the \(\text{FORMAT} \) menu. Select \(\text{F CURSOR} \), then select the required coordinate system for the cursor.

3. Move the flashing cursor on the screen to set the starting point of the line.

Note: The pixel increment can be set within the \(\text{ZOOM} \) menu. While \(\text{A ZOOM} \) is selected, choose \(\text{7 Dec} \) to set each pixel size to “0.1 \(\times \) 0.1”, or \(\text{8 Int} \) to set to “1 \(\times \) 1”.

4. When the starting point is set, press \(\text{ENTER} \) to anchor the location.

5. Move the cursor to indicate the end point of the line. When set, press \(\text{ENTER} \) to finalize the line drawing.

6. You may draw as many lines as you wish, by repeating the procedure from 4 to 5. When done drawing, press \(\text{CL} \) to exit the entry mode.
03 H_line

Draws a horizontal line on the graph window.

H_Line y-value

Draws a horizontal line ($y = value$) on the graph window.

Example

- Draw a horizontal line of $y = 5$.

1. Press $2nd F$

 DRAW A

 0 3 and enter the value 5.

From the Calculation screen

H_Line y-value

Draws a horizontal line ($y = value$) on the graph window.

Example

- Draw a horizontal line manually.

1. Press $2nd F$

 DRAW A

 0 3.

2. Use the cursor navigation keys

 (▲ ▼ ◄ ►) to move the flashing cursor to the appropriate position.

3. Press ENTER to draw the line.
Chapter 4: Graphing Features

04 V_line

Draws a vertical line on the graph window

V_Line x-value

Draws a vertical line \((x = \text{value})\) on the graph window.

Example

- Draw a horizontal line of \(x = 3\).
 1. Press [2ndF DRAW A 0 4] and enter the value 3.

05 T_line(

Draws a tangential line at the specified point of a graph curve.

T_line(equation, x-value)

Example

- Draw the tangential line of \(y = x^2\) at \(x = 1\).
 1. Select T_line(
 2. Enter “\(x^2, 1\)” on the line.
 3. Press [ENTER].

Note: It is also possible to specify a function equation from Y0 to Y9 if stored. (T_line(Y1, 1))
Chapter 4: Graphing Features

From the GRAPH window

T_line(

Example
• Draw a tangential line by manually specifying the point.
1. Select T_Line().
2. Use [左] [右] to move the flashing cursor on the targeted graph line.
 Use [上] [下] to select a graph to draw the tangential line.
3. When the point is set at the tangent point, press ENTER.
 • It is also possible to input the x-value and press ENTER.

Note: The equation of the tangent line is displayed temporarily. (The equation may include a margin of error.)

06 N_line(

Draws the normal line at the specified point of a graph curve. Draws the orthogonal line of a tangent at the specified point of a graph curve.

From the Calculation screen

N_line(equation, x-value)

Example
• Draw the normal line of \(y = x^2 \) at \(x = 1 \).
1. Select N_Line().
2. Enter “\(x^2, 1 \)” on the line.
3. Press ENTER.

Note: It is also possible to specify a function equation from Y0 to Y9 if stored. (N_line(Y1, 1))
Chapter 4: Graphing Features

From the GRAPH window

N_line(

Example
- Draw a normal line by manually specifying the point.

1. Select N_Line.
2. Use < and > to move the flashing cursor on the targeted graph line.
 Use ▲ and ▼ to select a graph to draw the orthogonal line.
3. When the point is set at the point, press [ENTER].
 - It is also possible to input the x-value and press [ENTER].

Note: The equation of the line is displayed temporarily. (The equation may include a margin of error.)

07 Draw

Draw equation

Draws an additional graph based on a given expression.

Example
- Draw the graph of $y = 3x^2 - 4x + 2$.

1. Select Draw.
2. Enter “$3x^2 - 4x + 2$” on the line.
3. Press [ENTER].

Note: This tool can be used with rectangular coordinate graphs only.

08 Shade(

Shade(equation1, equation2 [, lower value, upper value])

Draws two graphs, and shades the area between the two. If the x range is specified, it shades the area within the specified range.

Example
- Shade the area enclosed by $y = \frac{1}{4}x^2 - 8$ and $y = x$.

1. Select Shade.
2. Enter “$\frac{1}{4}x^2 - 8, x$” on the line.
3. Press [ENTER].
Chapter 4: Graphing Features

Example

- Shade the area enclosed by \(y = \frac{1}{4}x^2 - 8 \) and \(y = x \) within the range of \(-2 \leq x \leq 3\).

Before starting operation, Select **ClrDraw** to clear the graphs previously drawn.

1. Select **Shade**.
2. Enter \(\frac{1}{4}x^2 - 8, x, -2, 3 \) on the line.
3. Press **ENTER**.

Note: It is also possible to specify a function equation from Y0 to Y9 if stored.

09 DrawInv

DrawInv equation

Draws an inverse of a given graph expression.

Example

- Draw the inverse graph of \(y = \frac{1}{4}x^2 - 8 \).

1. Select **DrawInv**.
2. Enter \(\frac{1}{4}x^2 - 8 \) on the line.
3. Press **ENTER**.

Note: It is also possible to specify a function equation from Y0 to Y9 if stored.

10 Circle(

Draw a circle on the graph screen.

From the Calculation screen

Circle(x-coordinate of center, y-coordinate of center, radius)

Example

- Draw a circle with center at (2,3) and of radius 7.

1. Select **Circle**.
2. Enter \(2, 3, 7 \) on the line.
3. Press **ENTER**.

Note: Before drawing a circle, press **ZOOM A 6** to set the X-Y coordinates to square.
From the GRAPH window

Circle

Example
- Draw a circle manually.
 1. Select `Circle`.
 2. Move the cursor to set the center point of the circle. Press **ENTER** to set the anchor.
 3. Move the cursor to determine the radius length of the circle.
 4. When done, press **ENTER**.

The circle is drawn at the location.

11 **Text**

Text(column, row, “strings”)
Eneters a text string at a given coordinate.

Text(column, row, variable)
Draw the value of A-Z, θ.

Example
- Draw “HELLO” on the graph at column 2, row 1.

Text(2, 1, “HELLO”)

Note:
Use **MATH** 3 to enter “” (double quotes).

Column and row definitions for text input
* Refer to the following diagram to specify the coordinates where you wish to start writing the text.
Chapter 4: Graphing Features

Note: Lines, points, and curves drawn by the Draw menu are handled as pictures. Therefore, they cannot be traced.

Graphs drawn by the Draw menu are automatically cleared if any screen settings are changed. To save the graph, use the **StoPict** menu.

B POINT

Utilize these tools to manage point drawing and deletion on the graph.

There are two operation methods. One is to directly move the cursor pointer to the location on the graph screen where you wish to insert the point. The other is to call a relevant command on the Calculation screen and to directly input the coordinates to draw or delete the point. (X and Y coordinates should be separated by a comma.)

1 **PntON(PntON(x-coordinate, y-coordinate)**

Draws a point at a given coordinate. It takes the X-Y coordinate as an argument.

This tool can either be accessed from the GRAPH window or other windows. Entering from the GRAPH window enables a graphic entry, while entering from other windows enables text-based entry.

2 **PntOFF(PntOFF(x-coordinate, y-coordinate)**

Erases a pixel point. It takes the X-Y coordinate as an argument.

3 **PntCHG(PntCHG(x-coordinate, y-coordinate)**

Changes the status (i.e., visible/invisible) of a pixel at a given coordinate. Deletes the point when it is displayed and draws the point when it is not displayed.
Chapter 4: Graphing Features

4 PxlON(column, row)
Draws a pixel point at a given screen location indicated by column and row.
The column and row definitions are as follows:
Column: 0 to 132,
Row: 0 to 64.

5 PxlOFF(column, row)
Erases a pixel point at a given screen location indicated by column and row.

6 PxlCHG(column, row)
Changes the status (i.e., visible/invisible) of a pixel at a given screen location indicated by column and row.

7 PxlTST(column, row)
Returns “1” if a pixel point is present at a given screen location indicated by column and row.
Returns "0" if no pixel point exists.
Chapter 4: Graphing Features

C ON/OFF
Sets the visibility status of a given graph number (0-9).

1 DrawON
DrawON [equation number 1,] or DrawON
Sets the specified graphs visible. If no argument is given, then all graphs will be set visible.

2 DrawOFF
DrawOFF [equation number 1,] or DrawOFF
Sets the specified graphs invisible. If no argument is given, then all graphs will be set invisible.

Example
• Set Y1 and Y2 to visible and Y3 to invisible.
 1. Press \textit{\text{2ndF DRAW C 1}}.
 2. Enter “1, 2” for equation numbers.
 3. Press \textit{\text{ENTER}}.
 4. Press \textit{\text{2ndF DRAW C 2}}.
 5. Enter 3 for equation number.
 6. Press \textit{\text{ENTER}}.

D LINE
Sets the line appearance of each graph. Each graph coordinate mode (i.e., rectangular, polar, etc.) can retain a set of line appearance preferences. Solid line, dotted line, bold line, locus and dots can be selected.

1. Press \textit{\text{2ndF DRAW D}} to select D LINE, then press \textit{\text{ENTER}}.
2. The next window enables you to select the line types of each graph in the set coordinate mode. (The rectangular coordinate mode is selected in this example.) Use the cursor keys to select the required line type, and press \textit{\text{ENTER}}.
Chapter 4: Graphing Features

E G_DATA All graph data, including the graph equations and window settings, can be stored in 10 graph storage areas (1-9, and 0), which can be called up later.

1 **StoGD** **StoGD number** (0-9)
Saves the graph data.

Example

- Store the current graph data in location #1.

Note: The lines, graphs and pixels drawn with the **A DRAW** tools will not be saved here; use **StoPict** under **F PICT** instead.

2 **RclGD** **RclGD number** (0-9)
Recalls the saved graph data.

Example

- Call back the previously stored graph data from location #1.

Note: Attempting to call back graph data from an empty location will result in an error.
Chapter 4: Graphing Features

F PICT Stores and recalls the displayed pixel data for the graph window. The graph equations will not be saved or recalled with these tools.

1 **StoPict StoPict number (0-9)**
Saves the pixel data.

Example
- Store the current graph, including the drawings, in location #1.

![StoPict 1](image1)

2 **RclPict RclPict number (0-9)**
Recalls the saved pixel data.

Example
- Call back the previously stored graph data from location #1.

![RclPict 1](image2)
Chapter 4: Graphing Features

G SHADE With these sub-menu tools, inequalities, intersections and compliments of multiple graphs can be visualized.

1 SET Sets up the shading area for each graph.

Example
1. Set up a simple graph within the Graph Equation window. Enter “X^2” for Y1, for example.
2. Press `2ndF`, and `DRAW` to enter the DRAW menu, then press `G` to select **G SHADE**. The SHADE sub-menu appears.
3. Press 1 to select **1 SET**. The “Set shade” window appears.
4. Using the cursor keys, move the cursor pointer to the appropriate position.
5. Press `2ndF VARS ENTER`.
6. Press 1 to select Y1.
7. When the value is set, press the **GRAPH** key. The graph will be redrawn.
8. Let’s add another inequation, so that the area where the two inequality overlap can be shaded. Press the **Y=** key, and enter another simple graph equation such as “X + 4” for “Y2”.
9. Now, return to the SHADE menu by pressing `2ndF DRAW`, and `G`. Press 1 to select “1 SET”.
10. Within the “Set shade” window, add the second equation at the right of the topmost inequation. Use the ↑ or ↓ key to position the underscore cursor, then select “Y2” using the VARS menu.
11. Press the **GRAPH** to redraw the graph with the new shading appearance.

2 INITIAL Initializes the shading setup, and brings up the shading setup window.
Chapter 4: Graphing Features

13. Other Useful Graphing Features

Split screen

It splits the display vertically, to show the graph on the left side of the screen while showing the X-Y values in a table on the right.

The cursor is positioned on the table, and can be scrolled up/down using the ▲ or ▼ keys.

Graph and table

Graph and equation

- When 2ndF SPLIT are pressed on the graph screen, the graph and table are displayed on the same screen.
- When 2ndF SPLIT are pressed on the equation input screen, the graph and equation are displayed on the same screen.
Chapter 4: Graphing Features

The following illustration shows these relationships.

- The split screen is always in the trace mode. Therefore, the cursor pointer appears on the graph. Accordingly, the coordinate values are displayed reverse in the table and in the equation at which the cursor pointer is located is also displayed reversely.
- Using \(\leftarrow \) or \(\rightarrow \), move the cursor along the graph. (Values displayed reverse in the table are also changed accordingly.)
- When two or more graphs are displayed on the screen, the desired graph is selected using \(\uparrow \) or \(\downarrow \). (The table or equation on the right of the screen is also changed accordingly.)
- The table on the split screen does not relate to the table settings on the full-screen table.
- The table on the split screen is displayed in units of trace movement amount based on the cursor pointer position on the graph screen. When the full-screen table is displayed by pressing \(\text{TABLE} \), a different table may appear on the screen.
- When the EXPRES or Y’ is set to ON on the FORMAT menu, the equation or coordinates are displayed on the graph screen.
- Only equations to be graphed are displayed on the split screen.
- Press \(\text{GRAPH} \) or \(\text{TABLE} \) on the split screen to display the full-screen of the graph or table. To exit the split screen, press any of other function keys.
Substitution feature

- The substitution feature allows you to input an equation using characters and variables, and then substitute numeric values for the characters to draw the graph.

- The substitution feature is valid only in the rectangular coordinate system. Using this feature, any number of numeric value sets can be substituted while referring to the graph drawing screen. This clearly shows the changes in the graph depending on numeric values.

 For example, the graph for \(Y1 = AX^3 + BX^2 + CX^2 - D \) is drawn by substituting numeric values for variables A, B, C, and D of the equation.

- 22 kinds of variables (characters), A to Z except for R, T, X, and Y can be used for the substitution feature.

- Up to seven variables (characters) can be used for one equation. (If the equation contains more than seven variables (characters), up to seven characters from the top of the equation are determined as variables and subsequent characters are ignored.)

- If you attempt to execute an equation containing no variables, the substitution feature becomes invalid and the error message, "NO VARIABLE", appears on the screen.

- To input the equation, there are the following two methods after \(\text{Y} \) has been pressed. After the equation has been input, the same operations apply to subsequent steps.

Example

Substitute numeric values under the conditions that \(Y1 = AX^2 + BX + C \) and \(Y2 = AX \) have been input.

Equation Entry screen

The cursor pointer is located at Y1. Drawing of both graphs Y1 and Y2 is valid.

1. Press \(\text{2ndF} \text{ SUB} \).

 The substitution feature screen will appear. The equation on which the cursor pointer is located and its variables are displayed on the right of the screen. If variables (characters) contain no values, the graph is not drawn.
Chapter 4: Graphing Features

If independent memories A to C contain any numeric values, the graph is drawn based on these values.

* If the equation (in this example, Y1) on which the cursor is located contains no variables, the substitution feature screen will not appear.

2. Press 2 ENTER.
 (2 is input to A.)
 The graph for “Y1 = 2X^2” is drawn. (Since B and C have no values, they are ignored.)
 At this time, the graph for Y2 is also drawn. Y2 also uses variable A which is used in Y1.
 Therefore, the drawing of the graph for Y2 is also valid.

 * If you need to draw only the graph for Y2, it is necessary to change variables (characters) or make the graph drawing for Y1 invalid.

3. Press 1 ENTER.
 (1 is input to B.)
 The graph is changed from “Y1 = 2X^2” to “Y1 = 2X^2 + 1X”.

4. Press (-) 3 ENTER.
 (-3 is input to C.)
 Now, the graph for “Y1 = 2X^2 + 1X – 3” is drawn on the screen.
Chapter 4: Graphing Features

Next, change variable A from 2 to 5 and see how the graph changes.

Rewrite the equation based on the numeric values input on the substitution feature screen.

1. Press \(\Delta \Delta 5 \text{ ENTER} \).
 (The cursor is moved from C to A and 5 is input.)
 The slope of the graph becomes sharp.

 * Move the cursor accordingly and substitute other numeric values for variables to view how the graph changes.

 * The trace function cannot be used in the substitution feature.
 (When \(\text{TRACE} \) is pressed, the full-screen graph will appear.)

2. Press \(\text{2ndF} \text{ EXE} \) to return to the equation display screen.
 The equation is written based on the last numeric values input on the substitution feature screen.

 * Once \(\text{2ndF} \text{ EXE} \) have been pressed, the screen cannot be returned to the previous substitution feature screen.
Chapter 5
SLIDE SHOW Feature

The SLIDE SHOW feature is especially incorporated to help students understand math concepts utilizing the calculator’s graphing capabilities. With this feature, the calculator’s screen images can be captured, organized, and stored.

To enter the SLIDE SHOW, press \[\text{SLIDE SHOW} \]. To exit the SLIDE SHOW feature, press \[\text{EXIT} \].

1. Try it!

Make a SLIDE SHOW named “CUBIC” to explain how to draw the graph of a factor-base cubic function and explain how to solve cubic equations using factors. Use the following cubic function as a sample.

\[y = (x - 3)(x - 1)(x + 2) \]

Create a new SLIDE SHOW

1. Set up a SLIDE SHOW file.
 Press \[\text{SLIDE SHOW} \] to enter the SLIDE SHOW menu.

2. Press \[\text{C ENTER} \] to select \[\text{C NEW} \].

3. Name your project (type “CUBIC,” for example), and press \[\text{ENTER} \].

Slide show title
[CUBIC]
4. Press \(Y= \) to enter the graph equation mode.

5. Enter \((x - 3)(x - 1)(x + 2)\) at the first equation.

6. Press \(\text{2ndF} \text{ CLIP} \).

The message “STORE SCREEN: 01” will appear. The image will be stored on page 1 of the SLIDE SHOW “CUBIC,” and the screen will automatically return to the previous screen.

Each time you press \(\text{2ndF} \text{ CLIP} \), the screen image will be captured and stored in the SLIDE SHOW.

7. Press \(\text{GRAPH} \).

Note:
- You cannot capture an image while drawing.
- If the cursor flashes at the upper right corner of the screen, the calculator is busy processing tasks. The SLIDE SHOW feature cannot capture images during this period.
- A captured image cannot be recaptured.

8. After the graph is drawn, press \(\text{2ndF} \text{ CLIP} \).

The image will be stored on page 2 of the SLIDE SHOW “CUBIC”.

9. Press \(\text{2ndF} \text{ SPLIT} \) to split the screen between the graph and the table.

10. After drawing is done, press \(\text{2ndF} \text{ CLIP} \).

The screen image is stored on page 3.

11. Press \(\text{once, and press } \text{2ndF} \text{ CLIP} \). Continue this operation.
Chapter 5: SLIDE SHOW Feature

Playing back the newly created SLIDE SHOW

1. Press \text{SLIDE SHOW} to go to the SLIDE SHOW menu. Press \text{B} to select \text{B PLAY}.

 A list of saved SLIDE SHOW projects will be shown.

2. Select the one you want to play back, either by using the shortcut key strokes, or by moving the cursor. (Select the item and press \text{ENTER}.)

 The first page of the SLIDE SHOW will appear.

 The number appearing at the upper right of the screen is the slide number.

3. Use the \text{▼} key or \text{ENTER} to display the next image; press the \text{▲} key to show the previous image.

Rearranging the captured images

Let’s change the last image of the SLIDE SHOW feature to before the third.

1. Press \text{SLIDE SHOW} to bring up the SLIDE SHOW menu.

Select a file

2. Press \text{D} to select \text{D SELECT}.

3. Choose the project you want to edit from the sub-menu list.

4. Press \text{ENTER} to select.

 The target SLIDE SHOW will be selected.

Select an image

5. Press \text{SLIDE SHOW E} to select \text{E EDIT}, then press \text{1} to select \text{1 MOVE}.

 The first image of the selected SLIDE SHOW file appears.
Chapter 5: SLIDE SHOW Feature

6. Go down to the last captured image using the \(\downarrow \) key.
7. Press [ENTER] to mark the image.

Specify the insertion point

8. Go up to the page 3 using the \(\uparrow \) key.
9. Press [ENTER].
 The marked image will be inserted at page 3.

2. The SLIDE SHOW menu

This section of the chapter summarizes each item in the SLIDE SHOW feature menu.

A CURR Displays the name of the currently selected or working SLIDE SHOW. Press [2ndF] [CLIP] to capture an image.

B PLAY Enables you to select a SLIDE SHOW file for playback.

C NEW Creates a new SLIDE SHOW file to store screen images.

D SELECT Enables you to select a SLIDE SHOW file to be edited and display its name in the A CURR window.

E EDIT Enables you to move/delete captured images, or change the file name of the current SLIDE SHOW.

Note: If no SLIDE SHOW file is stored, selecting any of the following sub-menu items will result in an error.

1 MOVE

With this sub-menu tool, a selected screen image can be moved, so that the playback order will change. To escape from this mode and go back to the SLIDE SHOW menu, press the [SLIDE SHOW] key.
1. While in the SLIDE SHOW menu, press \[E\] to select **EDIT**, then press \[1\] to select the **1 MOVE** sub-menu item.

2. With the \[\uparrow\] and \[\downarrow\] cursor keys, select the captured image you wish to move, then press \[\text{ENTER}\].

3. Select the position to which you wish to move the previously selected image using the \[\uparrow\] and \[\downarrow\] cursor keys.

4. Pressing \[\text{ENTER}\] will place the selected image at the new location. The selected image will be placed immediately before the current screen.

2 DEL

This sub-menu tool deletes the selected image captured in the SLIDE SHOW.

1. While in the SLIDE SHOW menu, press \[E\] to select **EDIT**, then press \[2\] to select the **2 DEL** sub-menu item.

2. With the \[\uparrow\] and \[\downarrow\] cursor keys, select the image you wish to delete.

3. Press \[\text{ENTER}\] to remove the selected image from the SLIDE SHOW file.

3 RENAME

Use this sub-menu tool to rename the SLIDE SHOW.

1. In the SLIDE SHOW menu, press \[E\] to select **EDIT**, then press \[3\] to select the **3 RENAME** sub-menu item.

2. The following screen enables you to change the SLIDE SHOW name.

3. Type the new name.
 - The default input mode is **A-LOCK**.
 - If you wish to incorporate numbers, press the **ALPHA** key to enter numbers.
 - To switch back into the **ALPHA** mode, press **ALPHA** again.

4. Pressing \[\text{ENTER}\] will store the new SLIDE SHOW name.
Chapter 6
Matrix Features

Within the Matrix features, up to ten different matrices can be entered.

To get to the Matrix features, press 2ndF MATRIX. Define and edit the matrices within this mode too.

1. Try it!

Three equations can be derived as follows, containing three unknown quantities:

\[
\begin{align*}
3x + 2y + z &= 39 \\
2x + 3y + z &= 34 \\
x + 2y + 3z &= 26
\end{align*}
\]

x, y, and z represent the price for each sheaf of the first, second and third class crops, respectively.

You can solve the above system of linear equations by using a matrix.

CONCEPT

1. Enter the coefficients as elements in a matrix.
2. Use the \textbf{rrowEF} function to obtain the reduced row echelon form.
PROCEDURE

Select a matrix to edit
1. Press 2ndF MATRIX to enter the MATRIX menu.
2. Press B to select B EDIT and then 1 to select 1 mat A.

Define dimensions
3. Press 3 ENTER 4 ENTER to define the dimensions of the matrix (3 rows × 4 columns).

Enter the values
4. Press 3 ENTER 2 ENTER 1 ENTER 3 9 ENTER to enter the first row of 3x + 2y + z = 39. The cursor will automatically position itself at the beginning of the second row.
5. Press 2 ENTER 3 ENTER 1 ENTER 3 4 ENTER to enter the second row of 2x + 3y + z = 34.
6. Press 1 ENTER 2 ENTER 3 ENTER 2 6 ENTER to enter the third row of x + 2y + 3z = 26.
7. Press to return to the calculation screen. Matrix A is now set.

Solve the problem
8. Press 2ndF MATRIX to display the MATRIX MENU, and press D to select D MATH and then press 4 to select 4 rowEF. The reduced row echelon form is now set, as shown:
9. Press 2ndF MATRIX, then press A to select A NAME and press 1 to select 1 mat A. The Matrix A is now set and ready to be calculated.
Chapter 6: Matrix Features

10. Press [ENTER].
 The reduced row echelon form of the matrix is displayed.

<table>
<thead>
<tr>
<th>Display</th>
<th>Solution</th>
</tr>
</thead>
</table>
| rrouEF mat A | \(\begin{align*} x & = 9.25 \\
 & 0x + 1y + 0z = y = 4.25 \\
 & 0x + 0y + 1z = z = 2.75 \end{align*} \) |

2. Entering and Viewing a Matrix

Select a matrix

1. Press \[\text{2ndF} \ \text{MATRIX}\], then press \[\text{2ndF} \ B\] (select \text{EDIT}) and select the matrix you want to define.

Note: Up to 10 matrices from \text{1 matA} to \text{0 matJ} can be defined.

Define dimensions

2. Enter the row dimension number and press \[\text{ENTER}].
 Cursor moves to the column dimension.

3. Enter the column dimension number and press \[\text{ENTER}].
 The matrix will be displayed with null values. (See below.)

* It is not required to press \[\text{ENTER}\] when the dimension number is 2 digits.

Matrix name

Up to 5 rows by 3 columns of elements can be displayed on the screen.

Press \[\text{Left} \ \text{Right} \ \text{Up} \ \text{Down} \] to scroll the matrix. Use row and column numbers on the left and upper side of the matrix to check the display location.

* If the dimensions of the matrix have previously been defined, the values will be displayed. You can retain or alter the dimensions accordingly.
Chapter 6: Matrix Features

Enter elements in the matrix

1. Press appropriate number keys to enter numbers at the 1st row and 1st column.
 The number is displayed at the bottom of the screen.
2. Press \text{ENTER}.
 The cursor moves to the 1st row, 2nd column.
3. Sequentially input the element data.
4. Press \text{#} after completion of data input.

Note: Elements in Matrix can be specified using the NAME menu of the MATRIX menu such as “mat A (1, 1).”

Editing keys and functions

- \text{[} and \text{]} Move the cursor within the current row or scroll horizontally.
- \text{\uparrow} and \text{\downarrow} Move the cursor within the current column or scroll vertically.
 On the top row, \text{\uparrow} moves the cursor to the dimensions field.
- \text{ENTER} ENTER the number in the cursor position and move the cursor to the next position.
- \text{CL} Clear the value of bottom line (input field).
- \text{\#} Store all the elements of the matrix and returns to the calculation screen.
3. Normal Matrix Operations

Many functions can be used for calculations of matrices and scalars.

Examples of each calculation are as follows:

\[
\begin{align*}
\text{mat A : } & \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix} \\
\text{mat B : } & \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 7 & 8 \end{bmatrix}
\end{align*}
\]

Matrix + Matrix

To add or subtract matrices, the dimensions must be the same.

Example

1. Press \(\boxed{\text{2ndF} \ \text{MATRIX} \ \text{CL}} \).
2. Press \(\boxed{\text{2ndF} \ \text{MATRIX} \ A} \) \(1 \) \(+ \) \(2 \).
3. Press \(\boxed{\text{ENTER}} \).

Matrix – Matrix

Example

1. Press \(\boxed{\text{2ndF} \ \text{MATRIX} \ \text{CL}} \).
2. Press \(\boxed{\text{2ndF} \ \text{MATRIX} \ A} \) \(1 \) \(- \) \(A \) \(2 \).
3. Press \(\boxed{\text{ENTER}} \).

Matrix × Matrix

To multiply two matrices, the column dimension of the first matrix must match the row dimension of the second matrix.

Example

1. Press \(\boxed{\text{2ndF} \ \text{MATRIX} \ \text{CL}} \).
2. Press \(\boxed{\text{2ndF} \ \text{MATRIX} \ A} \) \(1 \) \(\times \) \(2 \).
3. Press \(\boxed{\text{ENTER}} \).

Square of Matrix

To obtain the square of a matrix:

Example

1. Press \(\boxed{\text{2ndF} \ \text{MATRIX} \ \text{CL}} \).
2. Press \(\boxed{\text{2ndF} \ \text{MATRIX} \ A} \) \(1 \) \(\times^2 \).
3. Press \(\boxed{\text{ENTER}} \).
Chapter 6: Matrix Features

Inverse of Matrix

For the calculation of the inverse of a matrix, please proceed as for the reciprocal of a real number.

Example

1. Press \(\text{2ndF} \) [MATRIX] \(\text{A} \) \(\text{1} \).
2. Press \(\text{2ndF} \) [\(x^{-1} \)] [ENTER].

```
mat A^-1
[ [0.5833333333, -0.333... ]
 [ -0.4166666667, 0.666... ]
 [ 0.0833333333, -0.333... ]
```

4. Special Matrix Operations

This calculator has three Matrix calculation menus: **OPE, MATH** and \([\]\).

Examples of each calculation are as follows:

Calculations using OPE menus

01 `dim`

dim(matrix name)

Returns the dimensions of the specified matrix.

Example

- Check the dimensions of mat A.
- Newly define or change the dimensions to \(2 \times 3 \) for Mat C.

```
dim(mat A)
\{2 \ 2\}
dim(mat C)
\{2 \ 3\}
```

02 `fill`

fill(value, matrix name)

Fills each element with a specified value.

Example

- Enter the value 5 into all the empty elements of matrix C.

```
mat C:
[ \[1 5 \]
 [2 \ 5\]
 [2 \ 5\]
```

03 cumul

cumul *matrix name*

Returns the cumulative matrix.

Example

• Obtain the cumulative sum of mat A.

\[
\text{cumulative sum of } a_{ij} = a_{i1} + a_{i2} + \ldots + a_{ij}
\]

04 augment(

`augment(matrix name, matrix name)`

Appends the second matrix to the first matrix as new columns. The first and second matrices must have the same number of rows.

Example

• Create a new matrix with matrix A augmented by matrix B.

05 identity

`identity dimension value`

Returns the identity matrix with specified value of rows and columns.

Example

• Create the identity matrix of 3 rows × 3 columns.

06 rnd_mat(

`rnd_mat(number of row, number of column)`

Returns a random matrix with specified values of rows and columns.

Example

• Create a matrix of 2 rows × 3 columns with generated random values.

(when TAB = 2 and FSE = "FIX" at SETUP menu)
Chapter 6: Matrix Features

07 row_swap

row_swap(matrix name, row number, row number)

Returns the matrix with specified rows swapped.

Example
• Swap the 2nd and 3rd rows in the matrix E.

\[e_{2j} = e_{3j}, \quad e_{3j} = e_{2j} \]

\[
\begin{bmatrix}
4 & 9 & 2 \\
1 & 5 & 6 \\
\end{bmatrix}
\]

\[
\text{row_swap(mat E, 2, 3)} \rightarrow
\begin{bmatrix}
5 & 2 & 3 \\
1 & 5 & 6 \\
4 & 9 & 2 \\
\end{bmatrix}
\]

08 row_plus

row_plus(matrix name, row number, row number)

Adds the first specified row data to the second specified row data.

Example
• Add the 2nd row data to the first row of matrix E.

\[e_{1j}' = e_{1j} + e_{2j} \]

\[
\begin{bmatrix}
9 & 11 & 5 \\
4 & 9 & 2 \\
1 & 5 & 6 \\
\end{bmatrix}
\]

09 row_mult

row_mult(multiplied number, matrix name, row number)

Returns the scalar multiplication of elements in a specified row.

Example
• 3 \times each element of 1st row of mat E

\[e_{1j}' = 3 \times e_{1j} \]

\[
\begin{bmatrix}
15 & 6 & 9 \\
4 & 9 & 2 \\
1 & 5 & 6 \\
\end{bmatrix}
\]

10 row_m.p.

row_m.p.(multiplied number, matrix name, row number, row number)

Returns the scalar multiplication of elements in a specified row and adds result to elements in another specified row.

Example
• 2 \times each element of 3rd row and add the result to each element of the 1st row.

\[e_{1j}' = e_{1j} + 2 \times e_{2j} \]

\[
\begin{bmatrix}
7 & 12 & 15 \\
4 & 9 & 2 \\
1 & 5 & 6 \\
\end{bmatrix}
\]
\textbf{11 \texttt{mat→list}}(\texttt{matrix name, list name 1, ..., list name n})

Creates lists with elements from each column in the matrix. If dimensions of columns is greater than the number of lists specified, extra columns are ignored. Also, if it is less than the number of lists specified, extra lists are ignored.

\texttt{mat→list}(\texttt{matrix name, list name 1, ..., list name n})

Example

- Make List 1 and List 2 by using the 1st and 2nd columns of matrix E, respectively.

\begin{verbatim}
mat→list(mat E;L1,L2)
\end{verbatim}

\texttt{mat→list}(\texttt{matrix name, list name 1, ..., list name n})

Example

- Make List 3 by using the 3rd column of matrix E.

\begin{verbatim}
mat→list(mat E;3,L3)
\end{verbatim}

12 \texttt{list→mat}(\texttt{list 1, ..., list n, matrix name})

Creates a matrix using specified lists. This function is the same as \texttt{list→mat} in the List OPE menu.

Note: The list items must be prepared prior to executing this function.

Example

- Create columns of matrix D by using list items in L1 and L2.

\begin{verbatim}
list→mat(L1,L2;mat D)
\end{verbatim}
Calculations using MATH menus

1 det \textit{det matrix name}
Returns the determinant of a square matrix.
The determinant can only be applied to a matrix which has the
same row and column dimensions.

Example
• Give the determinant of matrix A.

2 trans \textit{trans matrix name}
Returns the matrix with the columns transposed to rows and the
rows transposed to columns.

Example
• Transpose rows and columns of matrix B.

3 rowEF \textit{rowEF matrix name}
Returns the row Echelon Form of the specified matrix. The number
of columns must be greater than or equal to the number of rows.

Example
• Give the row-echelon form of matrix B.

4 rrowEF \textit{rrowEF matrix name}
Returns the reduced row Echelon Form of the specified matrix. The
number of columns must be greater than or equal to the number of
rows.

Example
• Give the reduced row-echelon form of matrix B.
Use of [] menus

Using [] menus, you can manually enter a matrix on the calculation screen.

1. Press \(\text{[2ndF] [MATRIX] \ E \ 1} \ ([\) at the beginning of the matrix.

2. Press \(\text{[2ndF] [MATRIX] \ 1} \ ([\) to indicate the beginning of the first row.

3. Enter a number or expression for each element. Separate each element with commas.

4. Press \(\text{[2ndF] [MATRIX] \ 2} \ ([\) to indicate the end of the first row.

5. Repeat above steps 2 to 4 to enter all the rows.

6. Press \(\text{[2ndF] [MATRIX] \ 2} \ ([\) to indicate the end of the matrix.

7. Press \(\text{[ENTER]} \).

The matrix will be displayed.

Using a Matrix in an expression

To use a matrix in an expression, you can do any of the followings:

• Select a matrix from the \(MATRIX \ NAME\) menu.

• Enter the matrix directly using the [] function menus.
Chapter 7
List Features

1. Try it!

By analyzing years of data, we found that it takes the driver of a car approximately 0.75 seconds to react to a situation before actually applying the brakes. Once the brake pedal is depressed, it takes additional time for the car to come to a complete stop. Here is the equation used to compute total stopping distance on dry, level concrete:

The reaction time distance (in feet) = 1.1 times the speed (in miles per hour);
The braking distance = 0.06 times the speed squared;

\[y = 1.1 \times v + 0.06 \times v^2, \]

where \(y \) represents the total stopping distance (in feet), and \(v \) represents the speed (miles/hour)

Calculate the total stopping distances at the speeds of 30, 40, 50, 60, 70, 80 miles per hour.

CONCEPT

1. You can calculate all answers individually, but if you use list, you can obtain the results with one calculation.

PROCEDURE

Enter each speed value in the list

2. Press \(\frac{\text{MEM}}{\text{RCL}} \) to enter the calculation screen.

3. Press \(\text{2ndF} \) \{ 30 \}
 40 \, 50 \, 60 \, 70 \, 80 \, \text{2ndF} \}

The calculator displays the set of data.
Chapter 7: List Features

Store the list in L1

4. Press \(\text{STO} \ 2\text{nd} \ F \ L_1 \).
5. Press ENTER to store the list in L1.

Enter the equation using L1

6. Press \(1.1 \times 2\text{nd} \ F \ L_1 \) + 0.06 \(\times \) \(\text{L}_1 \) \(x^2 \).
7. Press ENTER.
8. List \(\{87, 140, 205, 282, 371, 472\} \) will appear.
 So the solutions are:

<table>
<thead>
<tr>
<th>Car speed</th>
<th>Stopping distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 miles/hour</td>
<td>87 feet</td>
</tr>
<tr>
<td>40 miles/hour</td>
<td>140 feet</td>
</tr>
<tr>
<td>50 miles/hour</td>
<td>205 feet</td>
</tr>
<tr>
<td>60 miles/hour</td>
<td>282 feet</td>
</tr>
<tr>
<td>70 miles/hour</td>
<td>371 feet</td>
</tr>
<tr>
<td>80 miles/hour</td>
<td>472 feet</td>
</tr>
</tbody>
</table>

Note: You can also perform the above calculation using the direct list input method (using braces).

\[
1.1 \times \{30, 40, 50, 60, 70, 80\} + 0.06 \times \{30, 40, 50, 60, 70, 80\} \ x^2 \text{ and press ENTER.}
\]

Store the list in L1

4. Press \(\text{STO} \ 2\text{nd} \ F \ L_1 \).
5. Press ENTER to store the list in L1.

Enter the equation using L1

6. Press \(1.1 \times 2\text{nd} \ F \ L_1 \) + 0.06 \(\times \) \(\text{L}_1 \) \(x^2 \).
7. Press ENTER.
8. List \(\{87, 140, 205, 282, 371, 472\} \) will appear.
 So the solutions are:

<table>
<thead>
<tr>
<th>Car speed</th>
<th>Stopping distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 miles/hour</td>
<td>87 feet</td>
</tr>
<tr>
<td>40 miles/hour</td>
<td>140 feet</td>
</tr>
<tr>
<td>50 miles/hour</td>
<td>205 feet</td>
</tr>
<tr>
<td>60 miles/hour</td>
<td>282 feet</td>
</tr>
<tr>
<td>70 miles/hour</td>
<td>371 feet</td>
</tr>
<tr>
<td>80 miles/hour</td>
<td>472 feet</td>
</tr>
</tbody>
</table>

Note: You can also perform the above calculation using the direct list input method (using braces).

\[
1.1 \times \{30, 40, 50, 60, 70, 80\} + 0.06 \times \{30, 40, 50, 60, 70, 80\} \ x^2 \text{ and press ENTER.}
\]
2. Creating a list

A list is a series of values enclosed by braces, and is treated as a single value in calculations or equations.

The calculator has 6 storage areas for lists from L1 to L6.

You can edit or access lists by pressing \(\text{[2nd]} \text{L} \) (numeric keys from 1 to 6).

Using \(\text{[2nd]} \text{LIST} \) (L_DATA) menus, you can store up to 10 sets (L_DATA 0 to L_DATA 9) of lists (L1 to L6) in a memory and recall any of the stored sets as required.

Store a series of data 1, 3, 2, and 9 in the list L1, and 5, 4, 6, 3 in L2

1. Press \(\text{[2nd]} \text{CL} \) to enter the calculation screen.
2. Press \(\text{[2nd]} \text{1, 3, 2, 9} \text{[2nd]} \)
3. Press \(\text{STO} \text{[2nd]} \text{L1} \)
4. Press \(\text{ENTER} \) to store the list in L1.
5. Press \(\text{[2nd]} \text{5, 4, 6, 3} \text{[2nd]} \text{STO} \text{[2nd]} \text{L2} \text{[ENTER]} \)

Tips: To view a specific list, press \(\text{[2nd]} \text{L1 to L6} \) then \(\text{ENTER} \) at the calculation screen.

3. Normal List Operations

- Lists can contain real and complex numbers.
- Lists can be used as values (or variables) in calculations or equations.
- Calculations between lists are also possible. (Both lists must contain the same number of elements.)
- The following examples use the L1 and L2 values stored in the previous section.
Chapter 7: List Features

5. Press `7` `R` `@` `1` `(5)` `A` `/` `@` `1` `E`.

Note: Separated by a colon (:), two or more commands can be entered in one line.

2. Press `sin` `2ndF` `L3` `ENTER`. “...” shows that results extend beyond the display to the right. Use `<<`, `>>` to scroll left or right, respectively.

1. Press `10` `X` `2ndF` `L1` `STO` `2ndF` `L3` `ENTER`.

3. Press `2ndF` `L1` `+` `2ndF` `L2` `ENTER`.

4. Press `(-)` `3` `STO` `2ndF` `L1` `L1` `(3)` `ALPHA` `:` `2ndF` `L1` `ENTER`.

5. Press `7` `STO` `2ndF` `L1` `(5)` `ALPHA` `:` `2ndF` `L1` `ENTER`.

6. Press `2ndF` `sqrt` `2ndF` `L2` `ENTER`.

Calculate 10 × L1 and store the results in L3

Calculate the sine of L3

Calculate L1 + L2

Change the 3rd element of L1 to –3

Append the new value 7 to L1 as the 5th element

Calculate the root of L2
4. Special List Operations

This calculator has four list calculation menus: OPE, MATH, L_DATA and VECTOR.

Calculations using the OPE menu functions

1 sortA(list name)
Sorts lists in ascending order.

Example
• Store list \{2, 7, 4\} in L1, and sort L1 in ascending order.

\[
\begin{array}{c|c}
\text{L1} & \{2, 7, 4\} \\
\text{sortA(L1)} & \text{Done} \\
\text{L1} & \{2, 4, 7\}
\end{array}
\]

2 sortD(list name)
Sorts lists in descending order.

Example
• Sort the above list L1 in descending order.

\[
\begin{array}{c|c}
\text{L1} & \{2, 4, 7\} \\
\text{sortD(L1)} & \text{Done} \\
\text{L1} & \{7, 4, 2\}
\end{array}
\]

Note: sortA(list name 1, list name 2, . . .)
If two or more lists are entered separated by commas, a sort is performed on the first list as a key, and the following lists are sorted in the order corresponding to the elements in first list (key list).

Example
• Store lists \{2, 7, 4\} and \{-3, -4, -1\} in L1 and L2 respectively, and sort L1 and L2 in ascending order using list L1 as a key list.

\[
\begin{array}{c|c}
\{2, 7, 4\} \& L1 & \{2, 7, 4\} \\
\{-3, -4, -1\} \& L2 & \{-3, -4, -1\}
\end{array}
\]

\[
\begin{array}{c|c}
\text{sortA(L1, L2)} & \text{Done} \\
\text{L1} & \{2, 4, 7\} \\
\text{L2} & \{-3, -1, -4\}
\end{array}
\]
Chapter 7: List Features

3 \textbf{dim(} \textit{list})

Returns the number of items (dimension) in the list.

Example
- Display the dimension of list \texttt{L1}.

\textbf{natural number} \Rightarrow \textbf{dim(} \textit{list name})

Set the number of items (dimension) of specified list to the specified number.

Example
- Set the dimension of list \texttt{L6} to 4.
 - All the elements are initially 0.
 - This operation overwrites the existing list dimensions.
 - The existing values within the new dimensions remain as they are.

4 \textbf{fill(} \textit{value, list})

Enter the specified value for all the items in the specified list.

* The dimension of the list must be set beforehand.

Example
- Set the dimension of list \texttt{L6} to 4 and substitute 5 for all the items of list \texttt{L6}.
Chapter 7: List Features

5 seq(seq(equation, start value, end value[, increments]) \Rightarrow target list name

Makes a list using the specified equation, range (start value and end value) and increments.

Example

- Fill the list using the equation \(y = x^2 - 8 \), where \(x \) increases from -4 to 4 by increments of 2.

Additional examples

- The 1st command displays all numbers from 0 to 10, the 2nd all odd numbers from 1 to 21, the 3rd all even numbers from 0 to 10.

* If increment is omitted, the default value 1 is used.

6 cumul cumul(list)

Sequentially cumulates each item in the list.

\(l_i' = l_1 + l_2 + ... + l_i \), where \(l_i \) is the i-th item of the list.

Example

- Set the list L1 to \{4, 2, 7\}, and obtain the cumulated list L1.
- Cumulate the above result.

7 df_list df_list(list)

Returns a new list using the difference between adjacent items in the list.

\(l_i' = l_{i+1} - l_i \), where \(l_i \) is the i-th item of the list.

Example

- Set the list L1 to \{4, 2, 7\}, and calculate the difference between adjacent items.
Chapter 7: List Features

8 augment(\text{ augment}(\text{list 1}, \text{list 2}) \\
\text{ Returns a list appending the specified lists.} \\
\textbf{Example} \\
\begin{itemize} \\
 \item Obtain the list appending \text{L1} \ ((4, 2, 7)) \text{ and } \text{L2} \ ((-1, -3, -4)). \\
 \item Press \text{ ANS \ STO \ L1} to store the list. \\
\end{itemize} \\
\begin{array}{|c|} \\
\hline \\
\text{augment(L1;L2)} \\
\{4, 2, 7; -1, -3, -4\} \\
\hline \\
\text{augment(\{1;2\};\{3;4\})} \\
\{1, 2, 3, 4\} \\
\hline \\
\text{Ans=L1} \\
\hline \\
\end{array} \\

9 list→mat(\text{ list→mat}(\text{list 1, ..., list n, matrix name}) \\
\text{ Makes a matrix using the specified list as column data, stored } \\
\text{under the specified matrix name.} \\
\textbf{Example} \\
\begin{itemize} \\
 \item Make a matrix \text{mat A} using list \text{L1} \text{ as the first column and list } \\
 \text{L2} \text{ as the second column.} \\
 \item The dimensions of the two lists must be the same. \\
 \item Complex numbers cannot be used with this function. \\
 \item This function is the same as \text{list→mat} of the OPE menu in the \\
 \text{MATRIX function.} \\
\end{itemize} \\
\begin{array}{|c|} \\
\hline \\
\text{List→mat(L1;L2;mat A)} \\
\text{mat A} \\
\{4, -1\} \\
\{2, -3\} \\
\{7, -4\} \\
\hline \\
\end{array} \\

0 mat→list(\text{ mat→list(matrix name, list name 1, ..., list name n)} \\
\text{ mat→list(matrix name, column number, list name)} \\
\text{ Makes lists from the matrix.} \\
\text{This function is the same as “mat→list” of the OPE menu in the} \\
\text{MATRIX function. See page 129 for details.}
Chapter 7: List Features

Calculations using MATH Menus

During the following explanations, the values of lists, L1 and L2 will be assumed to be:

L1 = \{2, 8, -4\}
L2 = \{-3, -4, -1\}

1 **min**\((\text{list})\)

Returns the minimum value in the list.

Example

- Calculate the minimum value of the list L1.

2 **max**\((\text{list})\)

Returns the maximum value in the list.

Example

- Calculate the maximum value of the specified list L2.

Note:

\(\text{min(list 1, list 2)}\)
\(\text{max(list 1, list 2)}\)

If two lists are specified in parenthesis separated by a comma, then a list consisting of minimum (or maximum) values is returned.

3 **mean**\((\text{list [, frequency list]}\))

Returns the mean value of items in the specified list.

Example

- Calculate the mean value of list L1.
4 median(list[, frequency list])
Returns the median value of items in the specified list.

Example
• Calculate the median value of the list L2.

| median(L2) | -3 |
| median({-3, -4, -1}) | -3 |

5 sum(list[, start number, end number])
Returns the sum of items in the specified list.

Example
• Calculated the sum of the list items of L1.
* You can specify the range of items in the list to sum.
 sum(L1, 1, 2) means sum the 1st to 2nd items of the list L1.
 sum(L1, 2) means sum all items from the second to the last of the list L1.

sum(L1)	6
sum(L1, 1, 2)	10
sum(L1, 2)	4

6 prod(list[, start number, end number])
Returns the multiplication of items in the specified list.

Example
• Calculate the multiplication of items in the list L1.
* You can specify the range of items in the list to multiply.
 prod(L1, 1, 2) means multiply the 1st to 2nd items of the list L1.
 prod(L1, 2) means multiplication of all items from the second to the last of the list L1.

prod(L1)	-64
prod(L1, 1, 2)	16
prod(L1, 2)	-32
7 stdDv(list[, frequency list])
Returns the standard deviation of the specified list items.

Example
• Calculate the standard deviation using the list items of list L2.

Note: If relative frequencies or probabilities are stored in the frequency list, please use P_stdDv.

8 varian(list[, frequency list])
Returns the variance of the specified list items.

Example
• Calculate the variance using the list items of list L2.

9 P_stdDv(list[, frequency list])
Returns the population standard deviation of the specified list items.

Example
• Calculate the population standard deviation using the list items of list L2.

Standard deviation and variance
Standard deviation: \(s = \sqrt{\text{Variance}} \)
(Estimation)

\[\text{Variance} = \frac{\sum_{i=1}^{n} (l_i - m)^2}{n - 1} \]
(Estimation)

Population standard deviation: \(\sigma = \sqrt{\frac{\sum_{i=1}^{n} (l_i - m)^2}{n}} \)
(Variance in case of complete survey)

where \(n = \) number of list items
\(l_i = \) list item value
\(m = \) mean value of the list
Calculations using VECTOR Menus

During the following explanations, the values of lists, L1 and L2 will be assumed to be:

\[L1 = \{2, 8, -4\} \]
\[L2 = \{-3, -4, -1\} \]

These functions use lists as vectors.

1 CrossPro(\textit{list name1, list name2})

Calculate the cross product (vector product) of two lists.

\textbf{Example}

- Calculate the cross product of L1 and L2.

\textbf{Note:} Calculation range:
- up to 3-dimensional vector.
- The dimensions of the vectors have to be identical.

\[\text{CrossPro}(L1, L2) \]
\[\{ -24, 14, 16 \} \]

2 DotPro(\textit{list name1, list name2})

Calculate the dot product.

\textbf{Example}

- Calculate the dot product of L1 and L2.

\textbf{Note:} Calculation range:
- up to 9-dimensional vector.
- The dimensions of the vectors have to be identical.

\[\text{DotPro}(L1, L2) \]
\[-34 \]
5. Drawing families of curves using the list function

Using list items as coordinates, you can simultaneously draw families of curves.

1. Press \(\text{Y=} \).
2. Enter the equation;
 \[Y_1 = \{3, -2\}x^2 + \{5, 3\}x + \{2, 4\} \]
3. Press \(\text{GRAPH} \).

Two graphs are drawn as shown on the right.
In this case, the first one represents the equation \(y = 3x^2 + 5x + 2 \) and the second \(y = -2x^2 + 3x + 4 \).

You can also use L1 to L6 to enter the equation;

1. Set the lists L1 to L3 as follows;
 \{3, -2\} \(\Rightarrow \) L1,
 \{5, 3\} \(\Rightarrow \) L2,
 \{2, 4\} \(\Rightarrow \) L3, and then
2. Enter the equation as follows.
 \[Y_1 = L_1x^2 + L_2x + L_3 \]

6. Using L_DATA functions

The calculator can store up to 10 list groups in memory (L_DATA 0 to L_DATA 9). You may store or recall any one of these list groups. Each list group can contain up to 6 lists.

1 StoLD StoLD natural number \((0-9) \)
Stores the current group of lists (L1 to L6) in L_DATA 0 to 9.

Example
1. Press \(\text{2ndF} \) \(\text{LIST} \) and select \(\text{C 1} \).
2. Enter the preferred number from 0 to 9 and press \(\text{ENTER} \).
 “Done” will appear and the current lists will be stored in L_DATA #.
2 RclLD

RclLD natural number (0-9)
Recall the stored group of lists for use.
Any current list data (not stored in L_DATA) is overwritten.

Example

1. Press \[
\text{2ndF LIST}
\] and select \[
\text{C 2}
\].
2. Enter the number to recall and press \[
\text{ENTER}
\].
 “Done” will appear and the current lists will be overwritten by the recalled list group.

7. Using List Table to Enter or Edit Lists

You can use List Table in the STAT menu to easily access the contents of the lists.
Though the STAT menu was originally designed for Statistics function calculations, the List Table is very useful for entering or editing list items.

How to enter the list

1. Press \[
\text{STAT A ENTER}
\].
 The list table will appear.
 The first column indicates the order number of each list, and the 2nd column corresponds to the list L1, the 3rd to the L2, and so on.
2. Move the cursor to the target cell and enter the appropriate value.
 The value will appear on the bottom line.
3. Press \[
\text{ENTER}
\].
 The value will enter the cell and the cursor move down to the next cell.

* “--------” indicates the end of the list. When you enter the value, “--------” goes down to the next cell.*
Chapter 7: List Features

How to edit the list

1. Press STAT and select A EDIT, then press ENTER.
2. Use the cursor keys to move the cursor to the target cell.
3. Enter the new value and press ENTER.
 The new value will be stored in the target cell.

* The display on the bottom line relates to the cell where the cursor pointer is located.

Though any number can be entered in a cell, the bottom line of the screen can display up to a maximum of 10 digits excluding exponents, and the cell can display up to a maximum of 8 digits including exponents.
Chapter 8
Statistics & Regression Calculations

The following statistical and regression features are available:

- Statistical calculations such as means and standard deviations
- Graphing statistical data
- Plotting regression curves
- Statistical tests
- Estimation
- Obtaining coefficients from regressions
- Distribution functions

1. Try it!

<table>
<thead>
<tr>
<th>Hours</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
<td>98</td>
<td>72</td>
<td>55</td>
<td>3</td>
<td>6</td>
<td>24</td>
<td>15</td>
<td>30</td>
<td>59</td>
<td>72</td>
<td>55</td>
<td>43</td>
<td>21</td>
<td>10</td>
<td>150</td>
<td>151</td>
<td>135</td>
<td>108</td>
<td>204</td>
<td>253</td>
<td>232</td>
<td>251</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>Monday</td>
<td>32</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>19</td>
<td>32</td>
<td>72</td>
<td>95</td>
<td>91</td>
<td>123</td>
<td>201</td>
<td>184</td>
<td>108</td>
<td>95</td>
<td>72</td>
<td>45</td>
<td>38</td>
<td>75</td>
<td>111</td>
<td>153</td>
<td>90</td>
<td>84</td>
<td>35</td>
</tr>
</tbody>
</table>

The following table shows the access counts (per hour) of a certain web site from Sunday midnight to Monday midnight.

Let’s input these data into the calculator (List function) and plot a histogram.

Opening the list
table to enter
data

Chapter 8: Statistics & Regression Calculations

2. Select A EDIT and press [ENTER].
The List table will appear. Initially, all elements are blank and
the cursor pointer is located at L1-1 (top left).

Entering hours
(index value)
3. Input 1 for hour.
4. 1 will be displayed at the
bottom line of the display.
5. Press [ENTER] to input the
index value.
6. Continue the procedure to input 2 to 24.

Entering the
data for Sunday
7. Press □ to move the
cursor to the top line of L2.
8. Input 98 for hour 01.
98 will be displayed at the
bottom line of the display.
9. Press [ENTER] to input the data.
98 will appear in position L2-1 and the cursor will move to the
second row.
10. Input 72 for hour 02 and press [ENTER]. Continue the procedure
to the end of the data.

Entering the
data for Monday
11. Press □ to move the
cursor to the top line of L3.
12. Input 32 for hour 01 and
press [ENTER].
13. Continue the procedure to
the end of the data.

If you enter the
wrong data
1. Press □, □, □, or □ to move the cursor
pointer to the target cell.
2. Input the correct number and press [ENTER].

Graphing the
statistical data
(Histogram)
Now we can plot the data to make histograms, broken line graphs
and other statistical graphs.
1. Press [START PLOT].
2. Select A PLOT1 and press [ENTER].
The following screen will appear.
Chapter 8: Statistics & Regression Calculations

Setting the graph drawing “on”

3. The first line shows if the graph drawing is on or off. Initially, the graph drawing is off. With the cursor pointer at the “on” position, press ENTER to set the graph drawing on.

4. Press \(\downarrow \) to move the cursor to the next line (DATA).

Selecting whether 1-variable plotting or 2-variable plotting

5. Select X for 1-variable plotting and press ENTER.

Select the list number used for graphing

Determining ListX and Freq Frequency relates to the number of times access occurred (L2) at the ListX stage. You can refer that the Access of ListX (L1) hour occurred Freq (L2) number of times.

6. Press \(\downarrow \) to move the cursor to the next line (ListX).

7. The default list name for ListX is L1. If another list name is set, press 2ndF L1 to enter L1.

8. L1 is set to be used for x-axis items.

Setting the frequency

9. Press \(\downarrow \) to move the cursor to the next line (Freq).

10. Press 2ndF L2 to enter L2.

Selecting the graph

11. Press \(\downarrow \) to move the cursor to the next line (GRAPH).

12. The graph format defaults to histogram, so if that is what is required, this does not need to be changed.

Making a graph

13. Press [ZOOM], and then select A ZOOM.

14. Press \(\rightarrow \) to move the cursor right and then press \(\downarrow \) several times.

9 Stat will appear.
15. Select 9 Stat and press ENTER.
You can directly press 9 at step 13 to select 9 Stat.
The histogram will appear on the display.
When you draw the graph using the automatic statistics zoom function (9 Stat), the division number is automatically set to \(\frac{X_{\text{max}} - X_{\text{min}}}{X_{\text{scl}}} \) (default value: 10). If you wish to show the graph hour by hour, change the value in the WINDOW menu.

Set the WINDOW settings

1. Press WINDOW.
Window (Rect) setting menu will appear.
2. Enter the values as shown in the diagram to the right.
Ymax is determined by the maximum access number (253 at 20:00 on Sunday).

Compare the access rates on Sunday and Monday

3. Press GRAPH.
You can compare up to 3 statistical data by setting PLOT2/PLOT3 to on.

Set the statistical plotting of PLOT1 (Sunday data) to a broken line

1. Press STAT PLOT A ENTER and move the cursor to GRAPH.
2. Press STAT PLOT again.
3. Press B and 1 (broken line with circle dots).
4. Press GRAPH.
The histogram is now changed to a broken line graph.
5. Press 2ndF QUIT to clear the screen.
6. Press STAT PLOT and select B PLOT2.
7. Set as follows.
Chapter 8: Statistics & Regression Calculations

8. Move the cursor to GRAPH and press \(\text{[STAT PLOT]} \).

9. Press \(\text{[B]} \, 2 \) (broken line with cross points).

10. Press \(\text{[GRAPH]} \).

Now you can compare the difference in web site access counts between Sunday and Monday.

Press \(\text{[2ndF QUIT]} \).

2. Statistics Features

1. STAT menus

Press the \(\text{[STAT]} \) key to access the statistical calculation menus. The menus are as follows:

A EDIT Provides the entry or edit mode and displays a list table.
B OPE Calculation menu for operations such as ascending or descending sort.
C CALC Obtains statistical values.
D REG Calculates regression curves.
E TEST Statistical hypothesis tests
F DISTRI Distribution menu items

Data Entry
Use a list table to enter the statistical data (press \(\text{[STAT]} \) to access). Up to 999 elements can be used for each list, though the amount of data able to be entered will vary according to the memory usage.

Calculating statistic values (CALC menu)
Use the CALC menu under the STAT menu to obtain statistic values.
Press \(\text{[STAT C]} \) to access the CALC menu.
Chapter 8: Statistics & Regression Calculations

2. Statistical evaluations available under the C CALC menu

1_Stats 1-variable (x) statistical calculations

\(\bar{x} \) Mean of sample (x)

\(s_x \) Standard deviation of sample (x)

\[s_x = \sqrt{\frac{\sum x^2 - n\overline{x}^2}{n - 1}} \]

\(\sigma_x \) Population standard deviation of sample (x)

\[\sigma_x = \sqrt{\frac{\sum x^2 - n\overline{x}^2}{n}} \]

\(\sum x \) Sum of sample (x)

\(\sum x^2 \) Sum of squares of sample (x)

\(n \) Sample number

\(x_{\text{min}} \) Smallest value of sample (x)

\(Q_1 \) First quartile of sample (x)

\(\text{Med} \) Median of sample (x)

\(Q_3 \) Third quartile of sample (x)

\(x_{\text{max}} \) Largest value of sample (x)

2_Stats 2-variable (x, y) statistical calculations

The following values are added to the 1-variable statistic calculations

\(\overline{y} \) Mean of sample (y)

\(s_y \) Standard deviation of sample (y)

\(\sigma_y \) Population standard deviation of sample (y)

\(\sum y \) Sum of sample (y)

\(\sum y^2 \) Sum of squares of sample (y)

\(\sum xy \) Sum of product of sample (x, y)

\(y_{\text{min}} \) Smallest value of sample (y)

\(y_{\text{max}} \) Largest value of sample (y)
Chapter 8: Statistics & Regression Calculations

The web site access counts example on page 147 will be used again to demonstrate the calculation of statistical values.

<table>
<thead>
<tr>
<th>Hours</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
<td>98</td>
<td>72</td>
<td>55</td>
<td>3</td>
<td>6</td>
<td>24</td>
<td>15</td>
<td>30</td>
<td>59</td>
<td>72</td>
<td>55</td>
<td>43</td>
<td>21</td>
<td>10</td>
<td>150</td>
<td>51</td>
<td>135</td>
<td>108</td>
<td>204</td>
<td>253</td>
<td>232</td>
<td>251</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>Monday</td>
<td>32</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>19</td>
<td>32</td>
<td>95</td>
<td>91</td>
<td>123</td>
<td>201</td>
<td>184</td>
<td>108</td>
<td>95</td>
<td>45</td>
<td>75</td>
<td>151</td>
<td>204</td>
<td>30</td>
<td>151</td>
<td>45</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

* If you did not previously enter the above values in the list table, press

\[\text{STAT} \] and select \text{A EDIT} to display the list entry mode and enter the values.

Calculating one-variable statistics using web site access counts for Sunday (L2) and Monday (L3).

Statistical calculations using the Sunday data (L2)

1. Press \[\text{STAT} \] and \[\text{CL} \] to display the statistics menu.
2. Press \[\text{C} \] and then \[1 \]. \[1_Stats\] will be displayed on the top line of the screen followed by the cursor.
3. Press \[\text{2ndF} \] \[L2 \] to enter L2 and press \[\text{ENTER} \].

 All the statistical values will be displayed on the screen.

 \[\text{1_Stats} \]
 \[\bar{X}=89.66666667 \]
 \[s_x=79.35646965 \]
 \[\sigma_x=77.68562 \]
 \[\Sigma x=2152 \]
 \[\Sigma x^2=337804 \]

4. Press \[\text{\downarrow} \] or \[\text{\uparrow} \] to scroll the screen.

Statistical calculations using the Monday data (L3)

5. Press \[\text{STAT} \] to display the statistics menu.
6. Press \[\text{C} \] and then \[1 \]. \[1_Stats\] will be displayed on the bottom line of the screen followed by the cursor.
7. Press \[\text{2ndF} \] \[L3 \] to enter L3 and press \[\text{ENTER} \].

 \[\text{1_Stats} \]
 \[\bar{X}=74.20833333 \]
 \[s_x=54.94105867 \]
 \[\sigma_x=53.78427525 \]
 \[\Sigma x=1781 \]
 \[\Sigma x^2=281591 \]
Calculating the previous two-variable statistical values can be performed in a single operation. Use a “,” (comma) to separate the two variables.

1. Press \(\text{2ndF} \) \(\text{L2} \) \(\text{,} \) \(\text{L3} \) to enter L2 and L3, and press \(\text{ENTER} \).

All the statistical values will be displayed on the screen.

4. Press \(\downarrow \) or \(\uparrow \) to scroll the screen.

ANOVA(The ANOVA(feature performs an analysis of variance to compare up to six population means.

1. Press \(\text{2ndF} \) \(\text{STAT} \) to display the statistics menu.

2. Press \(\text{C} \) and then \(\text{3} \).

ANOVA(will display on the top line of the screen.

3. Press \(\text{2ndF} \) \(\text{L2} \), \(\text{L3} \).

4. Press \(\text{ENTER} \).

The answer will appear on the screen.

Each character represents the following variables.

- **F**: The F statistic for the analysis
- **p**: The p value for the analysis
- **df**: Degrees of freedom
- **SS**: Sum of squares
- **MS**: Mean Square
- **sxp**: Pooled standard deviation
3. Graphing the statistical data

Press \(\text{STAT} \rightarrow \text{PLOT} \) to access the statistical graphing mode.

The calculator can plot statistical data on up to 3 types of graph (PLOT1 to PLOT3) to check the state of distribution.

The graph types can be selected from histogram, broken line plot, normal probability plot, normal distribution plot, box plot, modified box plot, pie chart, scatter diagram and XY line. Broken line plot, normal probability plot, modified box plot, scatter diagram and XY line can use 3 different types of points — circle, cross, and square.

Statistical graph types overview (chart)

![Graph Types Diagram](image)

1. Graph Types

Histogram (HIST)

A bar graph of sample (x)

The width of the bars is set by the Xscl*.

The Y-axis shows the frequency.

* The Xscl can be changed to between 1 and 64. Use the Window Setting Menu to change the Xscl. (See page 74.)
Chapter 8: Statistics & Regression Calculations

Broken line plot (B.L.)
A broken line graph for the frequency distribution of sample (x)
Three types of points can be selected from circle, cross and square.
The broken line is displayed by connecting the upper left points of the bars of the histogram, as the upper left point of each bar represents each class value in the histogram.
The calculator can draw both a histogram and a broken line plot at the same time.

Normal probability plot (N.P.)
Plots the variance of the standardized normal distribution with the statistical data (x) on the X axis or Y axis.
If the points plot almost linearly, it indicates that the data is of normal distribution.
The distance between the dots is set by the Xscl.
- The Xscl can be changed between 1 and 64. Use the Window Setting Menu to change the figure. (See page 74)
- You cannot set the frequency in the Normal probability plot. The statistical data must be created using only one list without splitting into the data and frequency.

Normal distribution plot (N.D.)
A normal distribution curve of sample(x)
The x-axis is in the range of Xmin to Xmax.
Chapter 8: Statistics & Regression Calculations

Box plot (Box)

A box plot graph of sample (x)
A. The minimum value (xmin) of the sample (x)
B. The first quartile (Q1)
C. Median (Med) of the sample (x)
D. The third quartile (Q3)
E. The maximum value (xmax) of the sample (x)

Modified box plot (MBox)

A modified box plot graph of sample (x)
A. The minimum value (xmin) of the sample (x)
B. The tip of extension which is defined by (Q3 – Q1) x 1.5
C. The first quartile (Q1)
D. Median (Med) of the sample (x)
E. The third quartile (Q3)
F. The tip of extension which is defined by (Q3 – Q1) x 1.5
G. The maximum value (xmax) of the sample (x)

- Statistical data on the outside of the extension are indicated by points, selectable from circle, cross, or square.
- The length of the extension from the box is determined by Q1 and Q3.
Pie chart

(PIE)

Pie graph of sample (x)

• Maximum number of division is 8.
• Calculation range: $0 \leq x < 10^{100}$
• Data can be displayed in two modes:
 • Value display: 8 digits
 • Percentage display: Fixed decimal (2 digits decimal)

* Pie graphs are drawn in the same order as on the specifying list.
* Pie graphs cannot be displayed simultaneously with other graphs and X/Y axis, though lines or dots can be drawn. The coordinates of the free-moving cursor depend on the Window settings.
• The values are stored in variables A to H.
• As all the displayed values are rounded down in the percentage display mode, the total percentage may not be 100.

Scatter diagram

(S.D.)

A two-dimensional plot graph using two samples (x, y)

Two sets of statistical data are required for the scatter diagram.

• Three types of points are selectable from circle, cross and square.
• Two statistical data lists can be set to either x- or y-axis according to your requirements.

XY Line

(XYLINE)

• Displays a graph that connects each point of the scatter diagram.
• Each point is connected in the sequence (rows) of the statistical data.
2. Specifying statistical graph and graph functions

- Up to three graphs can be plotted per sample data.

Specifying type of statistics graphing

1. Press **STAT PLOT**.
2. Select from **A PLOT1**, **B PLOT2** or **C PLOT3** and press **ENTER** to set the statistical graphing specifications.

 - Press **2ND QUIT** before step #3.

 - You may just press **A** to **C** to select.

 - You can overlap 3 plotting graphs (from PLOT1 to PLOT3) on a single screen. Choose on or off at the top line to determine whether each graph is displayed or not.

3. Press **STAT** **D (D LIMIT)** to specify the graphing range.

 - The **D LIMIT** menu is used to set the upper and lower limit lines of sample (x) of the statistical graph.

Limit settings (x value)

4. Press **1 (1 SET)**.
5. Enter the appropriate value for Lower limit and press **ENTER**.
6. Enter the appropriate value for Upper limit and press **ENTER**.

Displaying the upper and lower limit lines

7. Press **STAT PLOT D (D LIMIT)** and press **2 (2 LimON)** **ENTER** to display a line that indicates the mean value of sample (x), as well as the upper and lower limit lines.
8. Press **STAT PLOT D 3 (3 LimOFF)** and **ENTER** not to display the lines.

 - Upper and lower limit values are displayed using short broken lines.
 - The default value of the upper/lower limit is 1.
 - The mean value line is indicated by a long broken line.

3. Statistical plotting on/off function

- You can set the statistical plotting of PLOT 1 to 3 at once.

1. Press **STAT PLOT**.
2. Press **E**.
3. • To set the all plotting ON: Press 1 (1 PlotON).
• To set the all plotting OFF: Press 2 (2 PlotOFF).
 * You can control the plotting of PLOT1 to PLOT3 separately by pressing 1 ~ 3 after PlotON (or PlotOFF).

4. Press ENTER to set.

4. Trace function of statistical graphs

• The trace feature is available in statistical graphing and can be used to trace the curves of graphs with the cursor.

Tracing the graph

1. Press TRACE.
2. Use ← or → to move the cursor pointer to trace the graph curve.

Histogram

How tracing is done

• After pressing TRACE, the cursor pointer will appear on the top left corner of the first bar.
• If you press ← or →, the cursor pointer sequentially jumps between top left corners of the bars.
• X and Y values are displayed at the bottom line of the screen.
• Use ▲ or ▼ to change between graphs to trace.

Box plots and modified box plots

• After pressing TRACE, the cursor pointer will appear on the Med value of sample (x).
• If you press ← or →, the cursor pointer sequentially jumps among specific values, such as Q1, Q3, min, max.
• The value of cursor pointer position is displayed at the bottom line of the screen.

Pie chart

• If you press ← or →, the cursor pointer sequentially trace the chart. The cursor is displayed at the outside the graph, and the selected chart is highlighted.
4. Data list operations

Descending sort, ascending sort, changing the list order and deleting the lists can be done in the Operation menu.

Press \(\text{STAT B OPE} \) to access the data list operations.

1. \text{sortA}(list)
 Sorts the list in ascending order.
 This function is the same as the sortA menu item in List functions.
 See page 136 for details.

2. \text{sortD}(list)
 Sorts the list in descending order.
 This function is the same as the sortD menu item in List functions.
 See page 136 for details.

3. \text{SetList }\text{list name 1 [, list name 2 ...]}
 Changes the list order as specified.
 \textbf{Example}
 To change the order of lists in order of L2, L3, L1.
 Press \(\text{ENTER} \) to execute.
 Each list must be separated by a “ , ” (comma).
 • If only a single list name is specified, the specified list moves to the left end of the table.
 • After changing the list order, execute \text{SetList} with no argument.
 The list names are redefined according to the changing order.

4. \text{ClrList }\text{list name 1 [, list name 2 ...]}
 Deletes all the data from the specified list(s).
 \textbf{Example}
 To delete the data of L1 and L2.
 Press \(\text{ENTER} \) to execute.
 Each list must be separated by a “ , ” (comma).
5. Regression Calculations

Accessing the regression menu

1. Press \(\text{STAT} \) D REG.
 The Regression menu is displayed.

01 Med_Med Med_Med \((\text{list name for } x, \text{ list name for } y [, \text{ frequency list}] [, \text{ equation name to store}]\))
Finds the regression line using the median-median method. (linear regression)
Formula: \(y = ax + b \)
Parameters: \(a, b \)

02 Rg_ax+b Rg_ax+b \((\text{list name for } x, \text{ list name for } y [, \text{ frequency list}] [, \text{ equation name to store}]\))
Finds the regression line. (linear regression)
Formula: \(y = ax + b \)
Parameters: \(a, b, r, r^2 \)

03 Rg_ax Rg_ax \((\text{list name for } x, \text{ list name for } y [, \text{ frequency list}] [, \text{ equation name to store}]\))
Finds the regression line. (linear regression)
Formula: \(y = ax \)
Parameters: \(a, r^2 \)

04 Rg_a+bx Rg_a+bx \((\text{list name for } x, \text{ list name for } y [, \text{ frequency list}] [, \text{ equation name to store}]\))
Finds the regression line. (linear regression)
Formula: \(y = a + bx \)
Parameters: \(a, b, r, r^2 \)

05 Rg_x² Rg_x² \((\text{list name for } x, \text{ list name for } y [, \text{ frequency list}] [, \text{ equation name to store}]\))
Finds the regression line using the second degree polynomial. (quadratic regression)
Formula: \(y = ax^2 + bx + c \)
Parameters: \(a, b, c, R^2 \)
Chapter 8: Statistics & Regression Calculations

06 Rg_x^3 \(\text{Rg}_x^3(\text{list name for } x, \text{list name for } y [, \text{frequency list}] [, \text{equation name to store}]) \)
Finds the regression line using the third degree polynomial. (cubic regression)

Formula: \(y = ax^3 + bx^2 + cx + d \)
Parameters: \(a, b, c, d, R^2 \)

07 Rg_x^4 \(\text{Rg}_x^4(\text{list name for } x, \text{list name for } y [, \text{frequency list}] [, \text{equation name to store}]) \)
Finds the regression curve using the fourth degree polynomial. (quartic regression)

Formula: \(y = ax^4 + bx^3 + cx^2 + dx + e \)
Parameters: \(a, b, c, d, e, R^2 \)

08 Rg_In \(\text{Rg}_\text{In}(\text{list name for } x, \text{list name for } y [, \text{frequency list}] [, \text{equation name to store}]) \)
Finds the regression curve using the natural logarithm. (natural logarithm regression)

Formula: \(y = a + b \ln x \)
Parameters: \(a, b, r, r^2 \)

09 Rg_log \(\text{Rg}_\text{log}(\text{list name for } x, \text{list name for } y [, \text{frequency list}] [, \text{equation name to store}]) \)
Finds the regression curve using the common logarithm. (common logarithm regression)

Formula: \(y = a + b \log x \)
Parameters: \(a, b, r, r^2 \)

10 Rg_ab^x \(\text{Rg}_ab^x(\text{list name for } x, \text{list name for } y [, \text{frequency list}] [, \text{equation name to store}]) \)
Finds the regression curve using the exponential function. (exponential regression)

Formula: \(y = ab^x \)
Parameters: \(a, b, r, r^2 \)

11 Rg_ae^{bx} \(\text{Rg}_ae^{bx}(\text{list name for } x, \text{list name for } y [, \text{frequency list}] [, \text{equation name to store}]) \)
Finds the regression curve using the Euler exponential function. (Euler exponential regression)

Formula: \(y = ae^{bx} \)
Parameters: \(a, b, r, r^2 \)
Chapter 8: Statistics & Regression Calculations

12 Rg_x⁻¹ \(\text{Rg}_x^{-1} \) (list name for x, list name for y [, frequency list] [, equation name to store])
Finds the regression curve using the reciprocal function. (reciprocal regression)
Formula: \(y = a + bx^{-1} \)
Parameters: a, b, r, r²

13 Rg_axᵇ \(\text{Rg}_ax^b \) (list name for x, list name for y [, frequency list] [, equation name to store])
Finds the regression curve using the power function. (power regression)
Formula: \(y = ax^b \)
Parameters: a, b, r, r²

14 Rg_logistic \(\text{Rg}_\text{logistic} \) (list name for x, list name for y [, frequency list] [, equation name to store])
Finds the regression curve using the logistic function. (logistic regression)
Formula: \(y = c ÷ (1 + ae^{-bx}) \)
Parameters: a, b, c

15 Rg_sin \(\text{Rg}_\text{sin} \) ([iterations,] list name for x, list name for y [, frequency list] [, period] [, equation name to store])
Finds the regression curve using the sine function.
The calculator will fit a sine curve for unequal and equal spacing.
Formula: \(y = a \sin(bx + c) + d \)
Parameters: a, b, c, d

Note: The default iterations value is 3. The user may specify the value up to 25. To raise the accuracy, set the iterations value to 25 and enter \(2\pi/b \) to the period, where \(b \) = result obtained from the calculation beforehand.
16 \textit{x'} \textit{value or list \textit{x'}}

Finds the estimated value of \(x \) for a given value of \(y \) by applying the function determined by the regression.

\textbf{Example}

When the following is entered as statistical data:

\begin{tabular}{|c|c|c|c|c|c|}
\hline
\(x \) & 10 & 20 & 30 & 40 & 50 \\
\(y \) & 20 & 40 & 60 & 80 & 100 \\
\hline
\end{tabular}

Find estimated value of \(x \) given \(y = 140 \).

1. Enter the above data into L1 (\(x \)) and L2 (\(y \)) and execute \texttt{Rg_{ax+b}} (L1, L2).

2. Press \(\begin{array}{c}
\text{STAT} \\
\text{D} \\
1 \\
6 \\
\text{ENTER}.
\end{array} \texttt{140} \).

\textbf{17 \textit{y'}} \textit{value or list \textit{y'}}

Find the estimated value of \(y \) for a given value of \(x \) by applying the function determined by the regression formula.

\textbf{Example}

Using above data, find the estimated value for \(y \) given \(x = 80, 100 \).

1. Press \(\begin{array}{c}
\text{STAT} \\
\text{D} \\
80 \\
100 \\
\text{2ndF} \\
\text{D} \\
1 \\
7 \\
\text{ENTER}. \end{array} \texttt{140} \).

\(\{80, 100\} y' \)

\(\{160, 200\} \)

\(r^2 = 1 \)

\(\alpha = 2 \)

\(b = 0 \)

\(r = 1 \)

- \(16 \textit{x'} \) and \(17 \textit{y'} \) will be valid after executing a regression calculation excluding 2nd, 3rd, 4th, degree polynomial, logistic, and sine regressions.

\textbf{Using the regression functions}

The following table shows the relationship between the time and temperature of water, when heating a beaker filled with water.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Time (min)} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10.5 & 11 & 11.5 & 12 & 12.5 \\
\textbf{Temperature (°C)} & 38.4 & 46.4 & 54.4 & 62.5 & 69.6 & 76.1 & 82.4 & 88.6 & 93.4 & 94.9 & 96.5 & 98.2 & 99.1 & 100 \\
\hline
\end{tabular}
Chapter 8: Statistics & Regression Calculations

Enter a data in a list table
1. Press \(\text{STAT} \) \(\text{A} \) \(\text{ENTER} \).
2. Enter the time into list 1 (L1).
3. Enter the temperature into list 2 (L2).

Plotting the data
1. Press \(\text{STAT PLOT} \) \(\text{A} \) \(\text{ENTER} \).
2. Press \(\text{ENTER} \) to turn on the plotting.
3. Press \(\text{V} \) and \(\text{D} \) to select XY of DATA menu and press \(\text{ENTER} \).
Freq will change to ListY and set L2 to ListY.

Selecting the graph type
1. Press \(\text{V} \) to move the cursor to GRAPH.
2. Press \(\text{STAT PLOT} \) \(\text{G} \) and \(\text{2} \) \(\text{(2 Scatr}+) \) to set the graph type to scatter and point type to “+”.
3. Press \(\text{ZOOM} \) \(\text{A} \) \(\text{9} \) \(\text{(9 Stat)} \) to plot the scatter diagram for this data.
• Selecting \(\text{A} \) \(\text{9} \) in the ZOOM mode allows for quick graphing in an optimum range since window setting values of the graph plotting screen are automatically set using the list data.

Drawing a regression curve using quadratic regression
1. Press \(\text{CLR} \) \(\text{STAT} \) \(\text{D} \) \(\text{0} \) \(\text{5} \) \(\text{(05 Rg} \cdot \text{x}^2 \))
2. Press \(\text{2ndF} \) \(\text{L1} \) \(\text{,} \) \(\text{2ndF} \) \(\text{L2} \) \(\text{,} \) \(\text{2ndF} \) \(\text{VARS} \) \(\text{A} \) \(\text{ENTER} \) \(\text{A} \) \(\text{1} \) \(\text{)} \).
If you enter Y1 as the last variable, the obtained formula will automatically be set to the formula Y1.
3. Press \(\text{ENTER} \).
The regression formula and parameters will be displayed on the screen.
4. Press \(\text{GRAPH} \).
The calculator will draw the scatter diagram using the determined parameter values.
5. If there is a large difference between the regression curve and plotted dots, change the regression curve and repeat the above procedures.
Chapter 8: Statistics & Regression Calculations

About the residual list
- There are residuals between regression curves and actual values.
- The residual list stores these residuals automatically.
- The `resid` list can be found in `B REGEQN` of the STAT VARS menu (`2ndF VARS H ENTER B 0`).
- Use the following key operation to recall the residual list from the calculation screen:

  ```
  CLEAR CL 2ndF VARS H ENTER B 0
  ```

- Press `ENTER` to display the residual list on-screen.
- To show the residual list in the form of a graph, first store as a list, then follow the graphing operation.
- `resid` cannot be graphed when specified independently.

6. Statistical Hypothesis Testing

- The calculator performs hypothesis tests on statistical data.

Start a statistical test

1. Press `STAT E` (`E TEST`).
 The statistics test menu will appear.

2. There are 17 options in the statistics test menu. Press `▼` to navigate between pages, and press `▲` or `▼` to scroll the window.

3. Press the appropriate number to access a specific test.
 The statistics test window will appear.

4. Input appropriate information in the test window.
 - There are two types of input, from a statistics data list or inputting numerical values.
 - Some tests may not allow for inputting from the statistics data lists.
• **16 InputList** and **17 InputStats** specify the above input methods.

16 InputList: Sets the input mode to the statistic data list method

17 InputStats: Sets the input mode to the value input mode

For example, press \[\text{STAT} \ E \ 1 \ 6 \ \text{ENTER} \] to set to the list input mode.

5. Press \[\text{2ndF} \ \text{EXE} \] to execute the hypothesis test.

Note:
- Either list input or parameter input may be used for tests other than **01 χ² test**, **05 TtestLinreg**, **10 Ztest1prop**, **11 Ztest2prop**, **14 Zint1prop** and **15 Zint2prop**.
- To clear the contents entered in **Freq**, move the cursor to the list name then press \[\text{DEL} \ \text{ENTER} \].

01 χ² test Uses the sample data from a two-dimensional table represented by a matrix.

Example
If \(\text{mat A} = \begin{bmatrix} 3 & 2 & 5 & 4 \\ 6 & 1 & 3 & 8 \\ 2 & 3 & 5 & 1 \end{bmatrix} \)
execute the \(\chi^2 \) test and store the obtaining results in \(\text{mat B} \).

1. Press \[\text{STAT} \ E \ 0 \ 1 \].
2. Enter \(\text{mat A} \) as the Observed Matrix, and \(\text{mat B} \) as the Expected Matrix.

3. Press \[\text{2ndF} \ \text{EXE} \] to execute the \(\chi^2 \) test.

The result is entered in \(\text{mat B} \).

\(\chi^2 \): χ-squared statistic for the test

\(p \): p value for the test

\(df \): degrees of freedom
Chapter 8: Statistics & Regression Calculations

02 Ftest2samp Two samples data are tested for equality of standard deviation σ_1 and σ_2.

Example
Test when population standard deviation $\sigma_1 < \sigma_2$,

$n_1 = 20$,
standard deviation $s_{x_1} = 5.6$,

$n_2 = 50$, and
standard deviation $s_{x_2} = 6.2$

Set the input method to value input mode
1. Press STAT E 1 7 ENTER.
2. Press STAT E 0 2.
The parameter input screen will appear.
3. Press \rightarrow ENTER \downarrow to select $\sigma_1 < \sigma_2$.
4. Enter the values into the parameter fields.
$5.6 \text{ ENTER} 20 \text{ ENTER} 6.2 \text{ ENTER} 50 \text{ ENTER}$.
5. Press 2ndF EXE to execute the test.

F: Statistics
p: Probability

03 Ttest1samp Tests the hypothesis of population mean μ.

Example
Test the population mean $\mu_0 = 65$ with the sample data of

$\{65.6, 62.8, 66.0, 64.5, 65.1, 65.3, 63.8, 64.2, 63.5, 64.4\}$,
from a given population (alternate hypothesis of $\mu < \mu_0$)

1. Enter the above statistical data into L1.
 Press STAT E 1 6 ENTER to set the list input mode.
2. Press STAT E 0 3.
The parameter input screen will appear.
3. Press \(\Rightarrow \) [ENTER] \(\downarrow \) to select \(\mu < \mu_0 \) and press [ENTER].
4. Move the cursor pointer to \(\mu_0 \) and input 65 and press [ENTER].
5. Set the List to L1 and press [ENTER].
6. Press [2ndF] [EXE].

Answers are displayed on the screen, where \(t \) is the \(t \) statistic for the test, \(p \) is the \(p \) value for the test and \(s_x \) indicates sample standard deviation.

* If there is no weight list, the Freq field can remain empty.

04 Ttest2samp Tests two sample means, \(\mu_1 \) and \(\mu_2 \).

Example
Test the following two samples;
List 1 \{2.37, 2.51, 2.43, 2.28, 2.46, 2.55, 2.49\}
List 2 \{2.63, 2.71, 2.56, 2.61, 2.55, 2.68, 2.42, 2.48, 2.51, 2.65\}
1. Enter the above data into lists L1 and L2, respectively.
2. Press [STAT] \(E \) \(0 \) \(4 \).

The parameter input screen will appear.
3. Enter the appropriate value into each field.
If no Freq specification data is input, an initial Freq value of 1 is used.

* Pooled is prediction for unknown \(\sigma_1, \sigma_2 \).
Select “No” if \(\sigma_1, \sigma_2 \) are subjectively unequal.
Select “Yes” if \(\sigma_1, \sigma_2 \) are equal.
Calculation is executed using this prediction as the basis.
4. Press \texttt{2ndF EXE}.

\begin{center}
\textbf{05 TtestLinreg} \hspace{1cm} \textbf{Example}
\end{center}

Tests the significance of the slope for the linear regression and its correlation coefficient ρ.

Example

The test is for the slope β, and correlation coefficient ρ obtained from statistical data $X \{65, 56, 78, 86, 92, 71, 68\}$ and $Y \{95, 59, 88, 78, 75, 68, 80\}$ are not equal to zero ($\beta \neq 0 \& \rho \neq 0$).

1. Input the above lists X and Y into lists L1 and L2, respectively.
2. Press \texttt{STAT E 0 5}. The parameter input screen will appear.
3. Enter the appropriate value into each field.
 - Equation items may not be required.
 - If a linear regression calculation has been executed using the data, and the function equation has been stored in Y0 to Y9, input that equation number for the equation items.
4. Press \texttt{2ndF EXE}.

Answers are displayed on the screen, where a, b indicate regression coefficients, s indicates standard deviation, r indicates the correlation coefficient, and r^2 indicates the coefficient of determination.
Chapter 8: Statistics & Regression Calculations

06 Tint1samp Finds the confidence interval for the population mean μ.

Example
Find the confidence interval for the statistical data of
\{(65.6, 62.8, 66.0, 64.5, 65.1, 65.3, 63.8, 64.2, 63.5, 64.4),
from a given population and the level of confidence is 0.99.
1. Enter the above statistical data into list L1.
2. Press STAT E 0 6.
The parameter input screen will appear.
3. Enter the C-level value of 0.99.
4. Set the List to L1 and press ENTER.
5. Press 2ndF EXE.

Answers are displayed on the screen, where sx indicates the sample standard deviation.
- If you enter a value from 1 to 100 for the C-level, it will be changed to the % input mode.
- In the numerical value input mode, n is a positive integer.

07 Tint2samp Finds the confidence interval for the difference of two sample means, μ_1 and μ_2.

Example
Use the following two sample data (used for example 04);
List 1 \{(2.37, 2.51, 2.43, 2.28, 2.46, 2.55, 2.49)\}
List 2 \{(2.63, 2.71, 2.56, 2.61, 2.55, 2.68, 2.42, 2.48, 2.51, 2.65)\},
with the level of confidence of 0.99.
1. Enter the above data in to lists L1 and L2.

2. Press \[\text{STAT} \ 0 \ 7 \].
 The parameter input screen will appear.

3. Enter the appropriate value in each field.

4. Press \[\text{2ND} \ \text{F} \ \text{EXE} \].
 Answers are displayed on the screen, where the numerical value within () indicates the confidence interval for the differences between \(\mu_1 \) and \(\mu_2 \) when the level of confidence is 99%.
 In the numerical value input mode, “\(n_1 \)”, “\(n_2 \)” are positive integers.

08 Ztest1samp Tests the hypothesis of population mean \(\mu \).

Example
The average weight of a newly developed product is known to be 53.4 g and standard deviation (\(\sigma \)) is 4.5. Judge the validity when the average weight of 20 units is 52.4 g (x).

Set the input method to value input mode

1. Press \[\text{2ND} \ \text{F} \ \text{STAT} \ 1 \ 7 \ \text{ENTER} \].
2. Press \[\text{STAT} \ 0 \ 8 \].
 The parameter input screen will appear.

3. Set the alternate hypothesis to \(\mu \neq \mu_0 \), \(\mu < \mu_0 \) and \(\mu > \mu_0 \) (two-tail test, one-tail test settings). In this case, choose \(\mu \neq \mu_0 \) (two-tail test).
Chapter 8: Statistics & Regression Calculations

• μ_0 indicates the hypothesis mean, σ indicates the population standard deviation, x indicates the sample mean and n indicates the sample size. ("n" is a positive integer.)

4. Enter the appropriate value in each field.

5. Press $\mathbf{2ndF}$ \mathbf{EXE}. Answers will be displayed on the screen, where z indicates the test statistic and p indicates the p value of the test.

09 Ztest2samp Tests the equality of two sample means, μ_1 and μ_2.

Example
Test $\mu_1 > \mu_2$ where $\overline{x}_1 = 77.3$, $\sigma_1 = 3.4$, $n_1 = 30$, and $\overline{x}_2 = 75.2$, $\sigma_2 = 2.8$, $n_2 = 20$.

Set the input method to value input mode

1. Press $\mathbf{2ndF}$ \mathbf{STAT} \mathbf{E} $\mathbf{1}$ $\mathbf{7}$ \mathbf{ENTER}.

2. Press \mathbf{STAT} \mathbf{E} $\mathbf{0}$ $\mathbf{9}$.

The parameter input screen will appear.

3. Enter the appropriate value into each field.

4. Press $\mathbf{2ndF}$ \mathbf{EXE}. Answers will be displayed on the screen.
Chapter 8: Statistics & Regression Calculations

10 Ztest1prop Tests the success probability P_0 of a population.

Example
A coin was tossed 100 times and landed head side up 42 times. Normally, the probability of head facing up is 0.5. Test to see if the coin is fair.

1. Press STAT E 1 0. The parameter input screen will appear.
 - prop is the hypothesis probability. The test will be conducted using hypothesis $\text{prop} \neq P_0$.
 - x is the number of successes observed and n is the number of trials (where n is a positive integer.)

2. Enter the appropriate value into each field.

3. Press 2ndF EXE. \hat{p}: Success probability obtained from the sample data.

11 Ztest2prop Executes a comparative test for two success probabilities, (P_1, P_2).

Example
Test the equality of P_1 and P_2 given the sample data $n_1 = 50$, $x_1 = 16$ and $n_2 = 20$, $x_2 = 5$, where the hypothesis is $P_1 < P_2$.

1. Press STAT E 1 1. The parameter input screen will appear.

2. Enter the appropriate value into each field.
Chapter 8: Statistics & Regression Calculations

3. Press \(\text{2ndF} \) \(\text{EXE} \). Answers will be displayed on the screen, where \(\hat{P} \) indicates the calculated success rate of the data combined with sample data 1 and 2, and \(\hat{P}_1 \) and \(\hat{P}_2 \) show the success rates of sample data 1 and 2, respectively. \(n_1 \) and \(n_2 \) are positive integers.

12 \text{Zint1samp}
Finds the confidence interval of a population mean, \(\mu \).

Example
The average weight of a newly developed product is known to be 52.4 g and standard deviation (\(\sigma \)) is 4.5. Given the average weight of 20 units is 53.4 g (x), find the confidence interval of the data where the level of confidence (C-level) is 0.95.

Set the input method to value input mode
1. Press \(\text{2ndF} \) \(\text{STAT} \) \(\text{E} \) \(1 \) \(7 \) \(\text{ENTER} \).
2. Press \(\text{STAT} \) \(\text{E} \) \(1 \) \(2 \). The parameter input screen will appear.
3. Enter the appropriate value into each field.

4. Press \(\text{2ndF} \) \(\text{EXE} \). Answers will be displayed on the screen, where the numerical value within () indicates the confidence interval with the level of confidence at 0.95, that is, the confidence interval of this sample data with the confidence level of 95% is between 51.427... and 55.372....

C-level indicates the level of confidence and \(n \) is a positive integer.
13 Zint2samp Finds the confidence bound of two sample means μ_1 and μ_2.

Example
Find the confidence interval of μ_1 and μ_2 of sample data with the confidence level of 0.9, where $\overline{x}_1 = 77.3$, $\sigma_1 = 3.4$, $n_1 = 30$ and $\overline{x}_2 = 75.2$, $\sigma_2 = 2.8$, $n_2 = 20$ (\overline{x}_1 and \overline{x}_2 indicate sample means of two data.)

Set the input method to value input mode
1. Press $\text{STAT} \ E \ 1 \ 7 \ \text{ENTER}$.
2. Press $\text{STAT} \ E \ 1 \ 3$.
 Parameter input screen will appear.
3. Enter the appropriate value into each field.
4. Press $\text{2ndF} \ \text{EXE}$.
 Answers will be displayed on the screen, where the numeric value within () indicates the confidence interval of μ_1 and μ_2 at a confidence level of 90%.
 * n_1 and n_2 are positive integers.

14 Zint1prop Finds the confidence interval of the success probability of a population from the success probability obtained from sample data collected from a population.

Example
A coin was tossed 100 times and landed head side up 42 times. Normally, the probability of head facing up is 0.5. Find the confidence interval of the success probability at a confidence level of 0.95.
1. Press $\text{STAT} \ E \ 1 \ 4$.
 The parameter input screen will appear.
Chapter 8: Statistics & Regression Calculations

2. Enter the appropriate value into each field.

3. Press 2^{ndF} EXE.

Answers will be displayed on the screen, where the numerical value within () indicates the confidence interval of the success probability at a confidence level of 95%.

* n is a positive integer.

15 Zint2prop Finds the confidence interval of the difference ($P_1 - P_2$) of the success probability obtained from the two sets of sample data collected from two different populations.

Example
Find the confidence interval of the success probability (P_1, P_2) at a confidence level of 0.9 for the two sets of sample data $n_1 = 50, x_1 = 16$ and $n_2 = 20, x_2 = 5$.

1. Press $\text{STAT} \rightarrow 1 \rightarrow 5$.

The parameter input screen will appear.

2. Enter the appropriate value into each field.

3. Press 2^{ndF} EXE.

4. Answers will be displayed on the screen, where the numerical value within () indicates the confidence interval of the success probability $P_1 - P_2$ at a confidence level of 90%.

* n_1 and n_2 are positive integers.
7. Distribution functions

The calculator has distribution features to find statistical calculations.

To enter the distribution menu,

1. Press \(\text{STAT} \ F \) (F DISTRI).

 The distribution menu will appear.

2. There are 15 options in the distribution menu. Press \(\rightarrow \) to navigate between pages, and press \(\uparrow \) or \(\downarrow \) to scroll the window.

3. Press [ENTER] to select the function.

4. Input the specified values.

5. Press [ENTER] to solve.

Note: All functions of the distribution feature can be displayed as a graph by using the graphing feature.

01 pdfnorm(\text{pdfnorm}(value [, mean, standard deviation]) \)

Finds the probability density of the specified value \(x \) for the normal distribution \(N(\mu, \sigma^2) \). A list cannot be used.

* When mean \((\mu) \) and standard deviation \((\sigma) \) are omitted, \(\mu = 0 \) and \(\sigma = 1 \) are applied.

Example

Find the nominal distribution probability density for \(x = 65 \) when the normal distribution of the test score averages is 60 with a standard deviation of 6.

\[\text{pdfnorm}(65, 60, 6) \]

02 cdfnorm(\text{cdfnorm}(lower limit, upper limit [, mean, standard deviation]) \)

Calculates the normal distribution probability of a specified range \(x \) for the normal distribution \(N(\mu, \sigma^2) \). A list cannot be used.

* When mean \((\mu) \) and standard deviation \((\sigma) \) are omitted, \(\mu = 0 \) and \(\sigma = 1 \) are applied.

Example

Calculate the probability of range \(x = 54 \) to 66 in the above sample.

\[\text{cdfnorm}(54, 66, 60, 6) \]
Chapter 8: Statistics & Regression Calculations

03 InvNorm

InvNorm(probability [, mean, standard deviation])
Finds the value of x of a given normal distribution probability. A list cannot be used.
* When mean (μ) and standard deviation (σ) are omitted, μ = 0 and σ = 1 are applied.

Example
Find the value of x for the probability of 0.8 in the above sample.

\[
\text{InvNorm}(0.8, 60, 6) = 65.0497274
\]

04 pdfT

pdfT(value, degree of freedom)
Finds the probability density of a specified value x for the T distribution with n degrees of freedom. A list cannot be used.
Limitations:
Degree of freedom ≤ 140
• Degrees of freedom is a positive real number.
 If decimal values are used for the degrees of freedom, the calculator uses the closest integer of the given degree of freedom.
• An error may occur when an extremely large number is entered for degree of freedom.

Example
Find the probability density of the T distribution with 9 degrees of freedom when x = 2.5.

\[
\text{pdfT}(2.5, 9) = 0.02778012
\]
Chapter 8: Statistics & Regression Calculations

05 cdfT(
\text{cdfT}(\text{lower limit, upper limit, degree of freedom})
Finds the T distribution probability within the specified range of x for the T distribution with n degrees of freedom. A list cannot be used.
Limitations:
Degree of freedom \leq 670
• Degrees of freedom is a positive real number.

Example
Find the probability of range X = 0.5 to 3.2 for T distribution with 9 degrees of freedom.

06 pdf\chi^2(
\text{pdf}\chi^2(\text{value, degree of freedom})
Finds the probability density of a specified value x for the \chi^2 distribution with n degrees of freedom. A list cannot be used.
Limitations:
Degree of freedom \leq 141
• Degree of freedom is a positive real number.

Example
Find the probability density of \chi^2 distribution with 15 degrees of freedom when x = 6.5.

07 cdf\chi^2(
\text{cdf}\chi^2(\text{lower limit, upper limit, degree of freedom})
Finds the \chi^2 distribution probability of a specified range of x for the \chi^2 distribution with n degrees of freedom. A list cannot be used.
• Degree of freedom is a positive real number.

Example
Find the probability of range x = 3 to 15 for the \chi^2 distribution with 10 degrees of freedom.
Chapter 8: Statistics & Regression Calculations

08 pdfF\(\text{pdf}(\text{value}, \text{degree of freedom of numerator, degree of freedom of denominator}) \)

Finds the probability density of a specified value \(x \) for the F distribution that possesses two independent degrees of freedom, \(m \) and \(n \). A list cannot be used.

Limitations: Degree of freedom \(\leq 70 \)

- Degree of freedom is a positive real number.
- An error may occur when an extremely large number is entered for degrees of freedom.

Example
Find the probability density for the F distribution generated with degrees of freedom 15 and 10 when \(x = 3 \).

\[
\text{pdf}(3, 15, 10) = 0.044804194
\]

09 cdfF\(\text{cdf}(\text{lower limit, upper limit, degree of freedom of numerator, degree of freedom of denominator}) \)

Finds the F distribution probability of a specified range \(x \) for the F distribution with two independent degrees of freedom, \(m \) and \(n \). A list cannot be used.

Limitations:
Degree of freedom \(\leq 670 \)

- Degree of freedom is a positive real number.
- An error may occur when an extremely large number is entered for degree of freedom.

Example
Find the probability of the range \(x = 0 \) to 2.5 for the F distribution generated with degrees of freedom 15 and 10.

\[
\text{cdf}(0, 2.5, 15, 10) = 0.926291613
\]
10 pdfbin(\(\text{pdfbin(trial number, success probability [, success number])}\))
Finds the probability density of a specified value \(x\) for the binomial distribution. A list cannot be used except for success numbers. When the success number is not specified, the calculation is executed by entering values from 0 to the trial number and displays the list.
Limitations:
Success probability is \(0 \leq p \leq 1\).

Example
Find the probability density for 15 trials with \(x = 7\), for the binomial distribution with success probability of 30%.

11 cdfbin(\(\text{cdfbin(trial number, success probability [, success number])}\))
Finds the probability of a specified range \(x\) for the binomial distribution. A list cannot be used except for success numbers. When the success number is not specified, the calculation is executed by entering values from 0 to the trial number and displays the list.

Example
Find the probability of range up to \(x = 7\) for the F distribution generated with degrees of freedom 15 and 10.

Note for 10 pdfbin, 11 cdfbin:
When using function terms, please note that values for the number of trials and for the success number must be integer (i.e. must be rounded). E.g. inputting \(Y1=\text{pdfbin}(X, 0.5, 0)\) provides a value table, but no graph is drawn. If \(X\) is replaced by „intX“, the expected graph is displayed.

12 pdfpoi(\(\text{pdfpoi(mean, value)}\))
Finds the probability density of a specified value \(x\) for a Poisson distribution of mean \(\mu\).
Limitations: Mean of Poisson distribution \(\leq 230\)

Example
Find the probability density of \(x = 4\), for the mean of a Poisson distribution of 3.6.
13 cdfpoi\(\text{cdfpoi}(\text{mean, value}) \)
Finds the probability of a specified range \(x \) for a Poisson distribution of mean \(\mu \).

Example
Find the probability within the range up to \(x = 4 \).

```
cdfpoi(3.6, 4)
```

0.706438449

14 pdfgeo\(\text{pdfgeo}(\text{success probability, value}) \)
Finds the probability density of a specified value \(x \) for the geometric distribution.

Limitations:
Success probability is \(0 \leq p \leq 1 \).

Example
Find the probability density of a geometric distribution of success at the 26th time with success probability of 5.6%.

```
pdfgeo(0.056, 26)
```

0.013258301

15 cdfgeo\(\text{cdfgeo}(\text{success probability, value}) \)
Finds the probability of a specified range of \(x \) for the geometric distribution.

Limitations:
Success probability is \(0 \leq p \leq 1 \)

Example
Find the probability for the range up to \(x = 26 \) with success probability of 5.6%.

```
cdfgeo(0.056, 26)
```

0.77650292
Chapter 9
Financial Features

The financial calculation features include capabilities for compound interest calculations.

Press \(\text{2ndF} \ \text{FINANCE} \).

The financial menu screen will appear.
• Specifies the TVM-SOLVER mode.
• Selects a financial calculation function
• Specifies payment due (to pay at the beginning or end of period)
• Determines individual settings (in TVM-SOLVER mode)

1. Try it! 1

You plan to purchase a house for a price of $300,000. The down payment is $100,000.
Calculate the monthly payments for a 30-year loan at an annual interest rate of 5% for the remaining $200,000.

Draw a cash flow diagram on paper

1. Draw the following cash flow diagram to simplify the problem.

\[
\begin{align*}
\text{Cash flow} & \quad \text{Present Value (PV)} = 300,000 - 100,000 = 200,000 \\
\text{Future Value (FV)} & = 0 \\
I & = 5\% \\
N & = 12 \times 30 \\
& = 360 \\
\text{Time flow} & = 358 \quad 359 \\
PMT & = ? \\
\end{align*}
\]

• A horizontal line indicates a time flow (left to right) divided into even sections — months in this case. Each section indicates a compound period and the total number of sections indicates the total number of periods for payment.
Chapter 9: Financial Features

- Vertical arrows along the horizontal line indicate the cash flow. An UP arrow indicates inflow (+) and a DOWN arrow indicates outflow (–).
- The calculator considers the cash inflow for each period is constant. (Even payment.)

2. Determine the time each payment is due.

 For deposits and loan payments, the time each payment is due (paid at the beginning or the end of the period) makes for a different cash flow diagram.

Payment due at the end of the period

```
+   PV

Cash flow

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FV

I %

Time flow

PMT

N – 1

N
```

Payment due at the beginning of the period

```
+   PV

Cash flow

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FV

I %

Time flow

PMT

N – 1

N
```

In this case payment is due at the end of the period.

3. Determine the inflow and outflow and place the present value (PV = $200,000) on the diagram.

 We can consider the present value (PV) as a loan and thus inflow (revenue) from the customer's point of view. So, place the PV at the top left end of the diagram. We also can consider the principal interest total (Future value) as outflow (payment). Draw a vertical line with a DOWN arrow on the top of the diagram.

4. Complete the diagram with interest (I%), number of payment periods (N), future value (FV), and other required numbers.
Chapter 9: Financial Features

Starting the calculation

1. Press [2nd] FINANCE.

2. Press [C] (C PERIOD).

3. Press [1] (1 PmtEnd) and press [ENTER].

Payment due time is now set to the end of the period.

Enter the value using the SOLVER function

6. The following TVM-SOLVER screen will appear.

The payment due time is set to the end of the period.

9. The following TVM-SOLVER screen will appear.

The payment due time is set to the end of the period.

10. Input 360 for N (number of payment periods) and press [ENTER].

The cursor moves to “I%”.

11. Input 5 for I% (annual interest) and press [ENTER].

12. Input 200000 for PV (present value) and press [ENTER].

13. Press [ENTER].

Since the payment amount is to be calculated from the other values, no value must be entered for PMT (payment or received amount).

Since FV (future value) is “0” at the end, no value must be entered for FV.

15. Press [ENTER] again.

16. Press 12 for P/Y (number of payments per year) and press [ENTER].
Chapter 9: Financial Features

17. Press **ENTER**.
 Usually C/Y (cumulative interest per year) is the same value as P/Y. If not, enter the value instead.

18. Press **\(\text{\textup{\textup{\textup{\uparrow}}} \) 3** times to move the cursor to PMT (payment amount).

19. Press **2ndF** **EXE**.
 The result will appear as follows.

20. Payment amount per month
 PMT = -1073.643246
 (Negative value indicates payment.)
 The numerical value input format and display format in the FINANCE mode comply to that of SETUP.
 The above answer is given when the FSE setting in SET UP menu is set to FloatPT. If you wish to display 2 digit decimal point format, set TAB to 2 and FSE to FIX.

Answer: You have to pay $1,073.64 per month for 30 years.

Simple interest and compound interest

There are two ways to calculate interest: simple and compound. In the FINANCE mode, the calculator can execute compound interest calculations.

Example of depositing $10,000 in a bank for 3 years at an annual interest rate of 3%

<table>
<thead>
<tr>
<th>Period</th>
<th>Simple interest</th>
<th>Compound interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year</td>
<td>Receive $10,000 x 0.03 = $300</td>
<td>Receive $10,000 x 0.03 = $300</td>
</tr>
<tr>
<td>Second year</td>
<td>Receive $300 (constantly)</td>
<td>Receive $10,300 x 0.03 = $309</td>
</tr>
<tr>
<td>Third year</td>
<td>Receive $300 (constantly)</td>
<td>Receive $10,609 x 0.03 = $318.27</td>
</tr>
</tbody>
</table>

With compound interest, the amount in the bank is increased by receiving interest on the interest gained during each calculated period.
2. Try it! 2

If the monthly payments in the first example is limit to a fixed $800, how much must be the present value (PV) and the required amount of down payment.

Set the TAB and FSE (2 and FIX respectively)

1. Press 2ndF SETUP C 2 D 2
 TAB is set to 2 and FSE is set to FIX.

2. Press CL 2ndF FINANCE A and ENTER.
 The previous TVM-SOLVER screen will appear with the cursor flashing on N.

3. Press ▼ three times to move the cursor to PMT.

4. Press (-) 800 and ENTER.
 Be sure to enter the minus sign to indicate payment.

5. Move the cursor to PV.

6. Press 2ndF EXE.

7. PV will change to 149025.29
 • This indicates that the total amount over 30 years will be $149,025.29 if the maximum monthly payment is limited to $800.
• So, the required amount of down payment is $300,000 – $149,025.29 = $150,974.71.

Using the TVM-SOLVER screen, you can obtain various results by inputting the known variables and then moving the cursor to the unknown variable and pressing [2ndF] [EXE]. The value where the cursor pointer is placed will be calculated from the known variables.

Example

Compare the principal interest total when accumulating an interest of 2.18% monthly on $100 for 5 years with payment due at the beginning of the period and at the end of the period.

1. Payment due at the beginning of the period

 1. Press [2ndF] [FINANCE] [C] [2] and press [ENTER].
 2. Press [2ndF] [FINANCE] [A] [ENTER].

 Payment due is now set to the beginning of the period.

3. Enter the values.

4. Move the cursor to FV and press [2ndF] [EXE].

2. Payment due at the end of the period.

 1. Press [2ndF] [FINANCE] [C] [1] and press [ENTER].
 2. Press [2ndF] [FINANCE] [A] [ENTER].

 Payment due is now set to the beginning of the period.

3. Enter the values.

4. Move the cursor to FV and press [2ndF] [EXE].
3. CALC functions

Press \(\boxed{2ndF} \) FINANCE \(\boxed{B} \) to access the CALC functions.

The CALC functions 01 to 05 calculate any of the following variables from the other variables. (The same calculations are possible as the SOLVER functions.)

- \(N \): Number of payment periods
- \(I\% \): Interest
- \(PV \): Present value (principal sum)
- \(PMT \): Payment or received amount
- \(FV \): Future value (principal interest total)
- \(P/Y \): Number of payments per year
- \(C/Y \): Cumulative interest per year

- The contents calculated on the calculation screen do not affect the variable values in the TVM-SOLVER.

\[01 \text{ slv_pmt} \quad \text{slv_pmt} [(N, I\%, PV, FV, P/Y, C/Y)] \]

Calculates monthly payment (PMT)

\[02 \text{ slv_I\%} \quad \text{slv_I\%} [(N, PV, PMT, FV, P/Y, C/Y)] \]

Calculates annual interest

\[03 \text{ slv_PV} \quad \text{slv_PV} [(N, I\%, PMT, FV, P/Y, C/Y)] \]

Calculates present value (PV)

\[04 \text{ slv_N} \quad \text{slv_N} [(I\%, PV, PMT, FV, P/Y, C/Y)] \]

Calculates the number of payment periods (N)

\[05 \text{ slv_FV} \quad \text{slv_FV} [(N, I\%, PV, PMT, P/Y, C/Y)] \]

Calculates future value (FV)
Chapter 9: Financial Features

06 Npv (Interest rate, initial investment, list of following collected investment [, frequency list])
Calculates the net present value and evaluates the validity of the investment. You can enter unequal cash flows in the list of following collected investment.

Example
The initial investment is $25,000 planning to achieve the profits each year as shown on the right, Evaluate whether annual revenue of 18% is achieved.

* You can execute the calculation by using a list or a frequency list calculation.

07 Irr (initial investment, list of following collected investment [, frequency list] [, assumed revenue rate])
Calculates the investment revenue rate where the net present value is 0.

Example
If the investment for the sales plan in the previous example is $28,000, how much is the investment revenue rate?

* 12.42 is obtained as the answer, thus, the investment revenue rate for the above condition is 12.42%.

* In the previous example, revenues following the investment value (input using minus sign) were assumed to be positive. However, when the assumed revenue is set to minus (in other words, more than two inverse symbols), the assumed revenue rate must be entered at the end. Otherwise an error may occur.
The following CALC functions, **08 Bal, 09 ΣPrn** and **10 ΣInt** require the values of I%, PV and PMT variables. Enter the values beforehand in the TVM-SOLVER function.

Example using the 08 and 10 calculations

You plan to purchase a house for the price of $300,000. The down payment is $100,000. Calculate the monthly payments for a 30-year loan at an annual interest rate of 5% for the remaining $200,000.

08 Bal (Bal (number of payments [, decimal place to round]))

Calculates loan balance.

Calculate the loan balance after 15 years (180 months).

```
Bal(180) = 135767.8173
```

09 ΣPrn (ΣPrn (initial number of payments, end number of payments [, decimal place to round]))

Calculates the principal amount of the total payments.

Compare the principal amount of the total payments after 5 (1 to 60 months) and 10 years (61 to 120 months).

```
ΣPrn(1,60) = -16342.53503
ΣPrn(61,120) = -20973.33519
```

10 ΣInt (ΣInt (initial number of payments, end number of payments [, decimal place to round]))

Calculates the sum of the interest on the payments.

Compare the sum of the interest on the payment sum after 5 years and 10 years.

```
ΣInt(1,60) = -48076.05893
ΣInt(61,120) = -43445.25957
```
Chapter 9: Financial Features

Conversion functions

11 \(\rightarrow \text{Apr} \) (effective interest rate, number of settlements)
Converting effective interest rate to nominal interest rate

Example
If the effective interest rate is 12.55%, how much is the nominal interest rate for the quarterly compound interest? If the monthly compound interest rate is 10.5%, how much is the nominal interest rate?

\[
\begin{array}{c|c}
\text{\(\rightarrow \text{Apr}(12.55, 4) \)} & 12.00 \\
\text{\(\rightarrow \text{Apr}(10.5, 12) \)} & 10.03 \\
\end{array}
\]

12 \(\rightarrow \text{Eff} \) (nominal interest rate, number of settlements)
Converting nominal interest rate to effective interest rate

Example
If the annual (nominal) interest rate is 8%, how much is the effective interest rate for monthly compound interest? How much is it over half a year?

\[
\begin{array}{c|c}
\text{\(\rightarrow \text{Eff}(8, 12) \)} & 8.30 \\
\text{\(\rightarrow \text{Eff}(8, 2) \)} & 8.16 \\
\end{array}
\]

13 days (start month.day.year, end month.day.year)
Calculates the number of days between dates entered (within the range of 1950 to 2049)

Year, month, and day must be entered in 2-digit form. For example, enter 02 for 2002.

Calculate the number of days from September 1, 2012 to December 31, 2019.

\[
\text{days}(9.0112, 12.3119) = 2677
\]
4. VARS Menu

The VARS menu consist of a list of the variables used for the TVM-SOLVER functions.

• The VARS menu can be used to enter values in the sub-menu within the Finance menu.

1. Press `2ndF FINANCE D`.

2. The VARS sub-menu will appear.

3. Select the appropriate variable to use.

The variables in the VARS sub-menu are the same as those of the TVM-SOLVER feature.

How to recall the content of N

1. Press `2ndF FINANCE D 1 ENTER`.

How to recall the content of I%

2. Press `2ndF FINANCE D 2 ENTER`.

How to recall the content of PV

3. Press `2ndF FINANCE D 3 ENTER`.

• Each variable of the TVM-SOLVER can be recalled and then reentered.

How to reenter the value

Reenter 400 for N instead of 360

1. Press `400 STO`.

2. Press `2ndF FINANCE D 1 ENTER`.
Chapter 10
The SOLVER Feature

The SOLVER feature is one of the calculator’s most powerful and distinctive features, and helps you solve math problems with various analysis methods. Using this feature, problems from linear equations to complex formulas can be solved with ease.

To access the SOLVER feature, press \(\boxed{2nd \text{ F} \text{ SOLVER}} \); to exit, press \(\boxed{\text{Esc}} \).

Note: The SOLVER feature shares variables with other calculator features. These variables can be called up or defined within the SOLVER feature or any other features. For example, solving/defining a value of “A” within the SOLVER feature will also change the global value of “A”.

1. Three Analysis Methods: Equation, Newton & bisection, and Graphic

To switch your preferred analysis style:

1. Go into the SOLVER menu by pressing \(\boxed{2nd \text{ F} \text{ SOLVER}} \) within the SOLVER window. The SOLVER menu appears with four menu items.

2. While A METHOD item is selected on the left, select your preferred method by pressing \(\boxed{1} \), \(\boxed{2} \), or \(\boxed{3} \).

Note: When you enter an equation, you can use graph equations variables (Y1 - Y0) which are defined in the Graph Equation window.

Equation method

The Equation method is useful when there is only one unknown variable. For example, if you know the values of B and C for an expression “A + B = C”, use the Equation method.

Example
Determine the value of “C” in “A = 2B^2 + 4C”, when A = 4, and B = 5.
1. Enter SOLVER by pressing $\text{2ndF} \text{ SOLVER}$. The word SOLVER will flash on the screen, indicating that you are now in the SOLVER feature mode.

2. Enter the equation "A = 2B^2 + 4C".

 Press \(\text{ALPHA A } \sqrt{ \text{ALPHA B } x^2 } \text{ + 4 } \text{ALPHA C.} \)

3. Press \(\text{ENTER} \).

 The screen above right appears, indicating that there are 3 variables to be assigned.

 \textbf{Note:} If values were assigned to those variables prior to this operation, then the previously set values will be shown here. For example, "C = 57" may show up in this window; this simply indicates the value of "C" was previously set to "57".

4. Enter "4" for variable "A", and "5" for variable "B".

 Press 4 \(\text{ENTER} \) 5 \(\text{ENTER} \).

5. When the two known values have been specified, make sure that the cursor is at the value yet to be determined (in this case, the value of "C").

6. Press 2ndF EXE to execute the SOLVER. The value of "C" will be obtained.

* After the solution has been found, press CLR to return to the variable input screen. You may change the numeric values for the variables and select another unknown variable to solve.

* To edit the equation, press CLR on the variable input screen. The equation input screen allows you to correct or edit the previously input equation.
Newton&bisection method is a technique of finding approximate solutions to a math problem via calculus, when conventional algebraic techniques just cannot work. If the Equation method fails, the calculator will automatically switch to Newton&bisection method.

Example
Solve \(x^2 + 4x - 2 = 0\).

1. Enter SOLVER by pressing \(\text{2ndF} \text{ SOLVER}\). If you have items left on the screen, clear the entries by pressing the \(\text{CL}\) key several times.

2. Enter \(x^2 + 4x - 2\). When the expression is entered as a non-equation format, then \(=0\) is automatically assumed at the end. When done, press ENTER.

3. The next screen indicates the variable \(x\) and its previously set value. This value will be assumed as the starting point of the calculation segments, and the Newton&bisection SOLVER will find the closest approximation to the starting point. Enter “0”, and press ENTER.

4. Now, press \(\text{2ndF} \text{ EXE}\) to execute the SOLVER. Since this cannot be solved using the Equation method, the calculator automatically switches analysis to Newton&bisection method.

5. The next window confirms the starting point of the analysis (set to “\(x = 0\)” from step #3), and the size of each step (default is set to “0.001”). Press \(\text{2ndF} \text{ EXE}\).
6. The following window shows the approximate value of X (0.449489742), the right side value of the equation (assumed as “0”, at step #2), the left side value (which the entered expression results to this value when the value X is entered), and the difference between the left and the right side.

7. Since the L-R difference above indicates a margin of error, try entering smaller steps. Press [CL] to go back to step #3. Enter the value of X, then press [2ndF][EXE] to execute the SOLVER again. When the next window appears, try entering smaller step value (“0.00001”, for example).

8. Press [ENTER] to register the step value change, then [2ndF][EXE]. Although the value of X appears to be unchanged, the margin of error will have become small enough (“0”, in this example), to be as close to zero as possible.

Note: As you may well know, there may be more than one solution to the equation. To obtain the value of the other solutions, set the starting point of Newton&bisection method lower (“-10”, for example) or execute the SOLVER again with the current solution as a starting point.
Chapter 10: The SOLVER Feature

Graphic method The Graphic method is another way of approximating solutions, using graphical representations. This method is particularly useful when finding more than one solution on a graph axis.

Example
Obtain values for "Y = X^3 - 3X^2 + 1", when Y = 0.
1. Press 2ndF SOLVER to enter SOLVER. Clear screen entries by pressing CLEAR several times.
2. Enter “Y = X^3 - 3X^2 + 1" into the initial window, and press ENTER.
3. In the next window, set the Y value as “0", and press ENTER. The right side value of the equation is now set.

Note: Unlike in the Newton&bisection method, the X value will not be assumed as the starting point for the Graphic method.
4. Before proceeding further, you will need to set the SOLVER to the Graphic method. Press 2ndF SOLVER to call up the SOLVER menu, and press A (for A METHOD), then 3 (for 3 Graphic). The Graphic method is now set.
5. Press 2ndF EXE to proceed.
6. Next in the following window, specify the range of analysis that will incorporate all possible solution. In this example, we will set the beginning point at “-1”, and the end point at “3”. Press ENTER at each variable entry.
Note: The analysis will be limited to the range specified; a solution outside of the analysis range will not be detected. If no crossing point is found in the range, then a message “No solution found” will show at the bottom of the screen.

7. Pressing \(\text{2nd} \) \(\text{EXE} \) at this point will engage the analysis, as well as the graphical representation of the equation. Note that while the cursor flashes at the upper right corners of the screen, the calculator is busy processing tasks.

8. When the processing is complete, you will get the first value of \(X \) (the smallest), with a flashing star on the graph at the crossing point. To obtain the next \(X \) value, press \(\text{2nd} \) \(\text{CALC} \).

Note: To enlarge a part of graph after the solution has been found, you may use the ZOOM Box function. Press \(\text{ZOOM} \) and use the cursor for defining the box area.
Chapter 10: The SOLVER Feature

2. Saving/Renaming Equations for Later Use

The expressions you have entered in the SOLVER can be named and stored:

1. Go to the SOLVER menu by pressing $2nd \ F \ SOLVER$.
2. Press C to select the $C \ \text{SAVE}$ menu, and press E.
3. When the next screen appears, ALPHA LOCK mode is automatically set and the cursor is changed to “A”, indicating that alphabet characters can be entered.
 To enter numbers, press ALPHA.
 The equation name should consist of 8 characters/numbers or less.
4. When done, press E. The screen goes back to the SOLVER function screen.

Saved SOLVER expressions can also be renamed:

1. Go to the SOLVER menu by pressing $2nd \ F \ SOLVER$, and press D to select the $D \ \text{RENAME}$ sub-menu.
2. A list of saved equation names appears in the sub-menu. Select the equation name you wish to change.
 For example, press 0 to select the first item of the list.
3. When renaming is complete, press ENTER to save the change.
 The screen goes back to the SOLVER function screen.
3. Recalling a Previously Saved Equation

To recall a stored SOLVER equation:

1. Go to the SOLVER menu, and press [B] to select the B EQTN sub-menu.
2. A list of saved equation names appears in the sub-menu. Select the equation you wish to call back.
3. Press [ENTER]. The stored equation is called back.

Note: Any changes unsaved prior to recalling will be lost. Also be aware that any changes to the recalled equation will not be retained unless saved manually.

Functions of the SOLVER feature

Functions of the SOLVER feature are as follows:

\((-\), (,), =, +, -, x, \div, a^{b/c}, \frac{a}{b}, x^2, \sqrt{x}, \sqrt[n]{a}, \log, \ln, \log_2, 10^x, e^x, 2^x, \sin, \cos, \tan, \sin^{-1}, \cos^{-1}, \tan^{-1}, \sinh, \cosh, \tanh, \sinh^{-1}, \cosh^{-1}, \tanh^{-1}, \sec, \csc, \cot, \sec^{-1}, \csc^{-1}, \cot^{-1}, \int, \text{pdfnorm}(, \text{pdfT}(, \text{pdf} \chi^2(, \text{pdf} F(, \text{pdf} Bin(, \text{pdf} Poisson(, \text{pdf} Geo(, \text{cdf} \text{norm}(, \text{cdf} \text{T}(, \text{cdf} \chi^2(, \text{cdf} F(, \text{cdf} Bin(, \text{cdf} Poisson(, \text{cdf} Geo(, \text{Inv} \text{Norm}(.\)
Chapter 11
Programming Features

The calculator has programming features that enable automatic processing of a series of calculations any number of times.
Almost all the calculation and graphing language can be used in programs as well as the usual control flow statements such as If, For, While and Goto (with Label).
Please note that complex numbers cannot be used in programming.

1. Try it!

Display a message “HELLO WORLD” on the display.

Creating a new program

1. Press PRGM.
 The program menu screen will appear.
 - A EXEC Executes the selected program
 - B EDIT Opens a stored program file.
 - C NEW Creates a new program file
 - D V_INDEX Show variables which are used in the programs.

2. Press C ENTER.
 A new program window will open.

3. Input the program name (HELLO) on the top line of the screen.
 Up to 8 characters can be used for the title.

4. Press ENTER.

5. The cursor will move to the program input field just under the title.
Chapter 11: Programming Features

Starting programming

6. Press [PRGM].
 The program menu will open.
 The commands and other statements are preinstalled in the calculator.
 Do not directly type in commands using the Alphabetical mode, select each command from the program menu.

Note: Press [2ndF] CATALOG, and you can access all the available commands at once.

Entering a command

8. Press [PRGM].
 The characters following a double quotation mark can be manipulated as text. No double quotation mark is required to close the text.

Entering the alphabetical input lock mode

11. Type HELLO WORLD.
 Up to 160 alphanumeric characters can be input per line. (Strings of up to 158 characters maximum can be entered per line excluding commands, because each command is regarded as a single character.
 When a line exceeds the width of the screen, the display will shift to the left.

Store the program line by line

12. Press [ENTER].
 The cursor will move to the next line and the data input will be stored.
 Store the program line by line by pressing [ENTER], [▲] or [▼].

Execute the program

 Select a program by using [▲] [▼], and press [ENTER].
Chapter 11: Programming Features

2. Programming Hints

Editing the program

Press [PRGM] B and then the appropriate numbers to open the stored program.

Adding commands, strings or command lines to the program

Press [2ndF] INS to enter the insert type mode.
Press ENTER to go to the next line. Be sure to press [2ndF] INS again to turn off the insert type mode and return to type over mode. Press ENTER twice to insert a blank line.

Entering alphabetical characters (uppercase only)

Inputting commands

In general, only a single command can be input per line.

Storing a program line by line

After pressing ENTER, ▼ or ▲, the line will be stored in memory. Otherwise, it is not stored. Be sure to store the all lines by pressing ENTER ▲ or ▼ before quitting editing (pressing [2ndF] QUIT).

Blank line

Blank lines are ignored during execution. You can include blank lines to gain better readability.

Deleting a line

Move the cursor to the line you wish to delete and press [CL].

Deleting command or strings

Move the cursor to on or after the letter you wish to delete and press [DEL] or [BS], respectively.

Deleting an entire program

Press [2ndF] OPTION and use C DEL. (See Chapter 12 OPTION Menu).

Copying a line to another location

Press [PRGM] H in the program edit mode. (See page 216 for details)

Changing the program name

Press ▲ to move the cursor to the program name field. Enter the new name and press ENTER or ▼.

Re-executing the program

Pressing ENTER again after execution of the program completes.

Break the execution process

Press [ON] or [2ndF] QUIT to break the execution process.
3. Variables

- Single letters (uppercase letter from A to Z and θ) can be used as variables.
- Defined once in one program, a variable is set as a global variable across all other stored programs unless redefined.
 Hence results calculated in one program can be used by another.
- Only value (numbers) can be set as variables.
- Strings cannot be set as variables.

Setting a variable

Use \(\text{STO} \) to input a specific value or the value of formula into the variable.
Do not use = (comparison operands) to set the values into variable.

\[
5 \Rightarrow X \\
MX + B \Rightarrow Y
\]

The variable \(X \) is set to the value 5.
The variable \(Y \) is set to the value of formula \(MX + B \).

Index of variables in the programs

Programs can overwrite variables that you are using, e.g., in the calculation screen.
Here, you can check for which variable names this is the case.
Press \(\text{PRGM} \, D \), and then select the program title.
The index of variables which are used in the selected program is displayed.
- The subjects of the index are as follows:
 A~Z, θ, L1~L6, mat A~mat J
- Press \(\uparrow \) or \(\downarrow \) to display the previous or next program's variables.
- Press \(\text{2ndF} \, \text{QUIT} \) to exit.

4. Operands

- Almost all the calculation operands can be used in a program.
- Input an operand directly from the keys (+, −, ×, ÷, sin, cos, log and others) or using MATH, STAT, LIST, MATRIX and other menus.

Comparison operands

- The calculator has 6 comparison operands.
- Press \(\text{MATH} \, F \) and select an appropriate comparison operand.
 \[
 = \text{Equal} \quad \neq \text{Not equal} \\
 > \text{Greater than} \quad \geq \text{Greater than or equal} \\
 < \text{Less than} \quad \leq \text{Less than or equal}
 \]
5. Programming commands

- Print, Input, Wait, Rem, End and other commands can be used in a program. Screen settings, data input/output, graph settings and others can be controlled from a program.
- Press [PRGM] in the program edit mode to input the command.

A PRGM menu

1 Print Print variable
Print "character strings ["]
Displays the value of the variable on the screen.
The display format may vary according to the SET UP menu settings.
Character strings displayed by the print command will break at the edge of the screen.

2 " command " strings
Characters enclosed by double-quote marks are considered to be strings.
The closing double-quote can be omitted when it would appear at the end of a line.

3 Input Input ["prompt strings".] variable
Enables the user to input a value (list, etc.) for the specified variable during execution. A message “variable = ?” or “prompt strings?” will appear on the screen while the calculator waits for data input.
Prompt strings include alphabetical words, numbers, and other character strings that can be entered by keys and menus.
Chapter 11: Programming Features

4 Wait **Wait [natural number (1 to 255)]**
Interrupts execution for the (natural number) of seconds. If no value is specified, interruption continues until any key is pressed.

- A symbol will flash at the upper right corner of the screen during the wait.
- This command can be used for displaying intermediate results or other information.

5 Rem **Rem comments**
Comments start with Rem and extend to the end of the line. These lines are ignored at execution. Comments should be entered as notes for future reference, though it should be noted that they do occupy some memory space.

6 End **End**
Indicates the end of a program. End is not necessary at the last line of the program.

7 Key **Key variable**
If a numeric key or one of the cursor keys is pressed, the variable is set to the corresponding numeric value as specified in the following table.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

B BRNCH menu

Chapter 11: Programming Features

C SCRN menu

C SCRN menu commands are used to display or clear the screen.

1. **ClrT**
 - Clears the program text screen without affecting the plotted graph.

2. **ClrG**
 - Clears the graph screen without affecting the specified graph.
 - After the graph screen is cleared, the specified graph statement is drawn.

3. **DispT**
 - Displays the program text screen.

4. **DispG**
 - Displays the graph screen.

D I/O menu

This menu is used to send or receive data from externally connected devices.

1. **Get**
 - **Get variable**
 - Receives data from externally connected devices.

2. **Send**
 - **Send variable**
 - Sends data to externally connected devices.

E SETUP menu

SETUP menu commands are used to set the various settings used in graphing and calculations.

1. **Rect**
 - **Rect**
 - Sets the graph coordinates as X and Y coordinates.

2. **Param**
 - **Param**
 - Sets the graph coordinates as parametric coordinates.

3. **Polar**
 - **Polar**
 - Sets the graph coordinates as polar coordinates.
04 Web
Sets the graph coordinates as axes in sequence graphs.
\(u(n - 1) \) is set to the X axis and \(u(n) \) is set to the Y axis.

05 Time
Sets the graph coordinates as axes in sequence graphs.
\(n \) is set to the X axis and \(u(n), v(n) \) and \(w(n) \) is set to the Y axis.

06 uv
Sets the graph coordinates as the axes of sequence graphs.
\(u(n) \) is set to the X axis and \(v(n) \) is set to the Y axis.

07 uw
Sets the graph coordinates as the axes of sequence graphs.
\(u(n) \) is set to the X axis and \(w(n) \) is set to the Y axis.

08 vw
Sets the graph coordinates as the axes of sequence graphs.
\(v(n) \) is set to the X axis and \(w(n) \) is set to the Y axis.

09 Deg
10 Rad
11 Grad
Sets the angle mode to degree, radian and gradient, respectively.

12 FloatPt
13 Fix
14 Sci
15 Eng
16 Tab
Sets the number display mode to floating point, fixed decimal, scientific and engineering, respectively.

17 Decimal
18 Mixed
19 Improper
20 \(x \pm yi \)
21 \(r \angle \theta \)
Sets the answering mode to the one specified.
Chapter 11: Programming Features

F FORMAT menu (PRGM F)

F FORMAT menu commands are used to set the graph format.

01 RectCursor RectCursor
Sets the graph coordinate display format to X - Y axes.

02 PolarCursor PolarCursor
Sets the graph coordinates display format to polar coordinates.

03 ExprON ExprON
Sets the graph equation to be displayed on the graph screen.

04 ExprOFF ExprOFF
Sets the graph equation to not be displayed on the graph screen.

05 Y' ON Y'ON
Sets the derived function (Y') to be displayed on the graph screen.

06 Y' OFF Y'OFF
Sets the derived function (Y') to not be displayed on the graph screen.

07 AxisON AxisON
Sets the specified axis to be displayed on the graph screen.

08 AxisOFF AxisOFF
Sets the specified axis to not be displayed on the graph screen.

09 GridON GridON
Sets the grid lines to be displayed on the graph screen.

10 GridOFF GridOFF
Sets the grid lines to not be displayed on the graph screen.

11 Connect Connect
Draws a graph with connected lines.

12 Dot Dot
Draws a graph with dots.

13 Sequen Sequen
Draws the graphs in sequential order.

14 Simul Simul
Draws the graphs simultaneously.
Chapter 11: Programming Features

G S_PLOT menu

S_PLOT menu commands are used for statistics plotting.

1. **Plt 1**
 Sets the statistical graph settings for plot 1.

2. **Plt 2**
 Sets the statistical graph settings for plot 2.

3. **Plt 3**
 Sets the statistical graph settings for plot 3.

 The above menu commands have the same usage as the following:

 \[\text{Plt1}(\text{graph type, X list name [, Y list name, frequency list]}) \]

 Press \[\text{STAT} \text{ PLOT} \] to specify a graph type.

4. **PlotON [number]**
 Sets drawing of the specified statistical graph to on.
 If no number is specified, this command turns on all of the statistical graphs.

5. **PlotOFF [number]**
 Sets drawing of the specified statistical graph to off.
 If no number is specified, this command turns off all of the statistical graphs.

6. **LimON**
 This command turns on the limit lines for upper, lower, and mean values.

7. **LimOFF**
 This command turns off the limit lines for upper, lower, and mean values.
Chapter 11: Programming Features

6. Flow control tools

The calculator has the common flow control tools such as Goto - Label loop structures, and If-, For- and While-statement clauses for enhancing a program’s efficiency. It also has the capability for subroutines.

It is recommended to use If, For or While statements rather than Goto-Label loop structures.

To access the flow control tools, use the PRGM B BRNCH menu.

01 Label Label label name
 Specifies a branch destination for Goto or Gosub.
 The same Label name cannot be used in two places within the same program.
 Up to 10 characters can be used for a Label name.
 Up to 50 Labels can be used in a single program.

02 Goto Goto label name
 To shift the program execution to a label.

03 If If conditional statements Goto label name
 or
 If conditional statements
 Then
 commands or multiple statements *
 [Else
 commands or multiple statements]
 EndIf
 • Multiple statements mean a group of statement lines separated by colons(:) that are evaluated as a single line.
 Within a second structure it is possible to use the following menu items.

04 Then

05 Else

06 EndIf

• Use a comparison operand in a condition statement.
• Up to 115 If clauses can be nested, though if combined with other types of loops, the maximum nested loop number may vary due to the memory capacity.
07 For
08 Next
For variable, initial value, end value [, increment]
 commands or multiple statements
 Next
• The increment value can be omitted. The default value is 1.
• For and Next statements must be placed at the beginning of the line.
• If the comparisons variable > end value (positive) or variable < end value (negative) are satisfied, the program will end the loop and go to the line indicated by the Next command.
• Up to 5 For loops can be nested, though if combined with other types of loops, the maximum nested loop number may vary due to the memory capacity.
• It is highly recommended that Label and Goto statements are not used in For loop structures.

09 While
10 WEnd
While conditional statements
 commands or multiple statements
 WEnd
• While and WEnd statements must be placed at the beginning of the line.
• Multiple While loops can be nested to within the memory capacity.
• Conditional statements are evaluated before entering the While clause.
• It is highly recommended that Label and Goto statements are not used in While loop structures.
• Up to 8 while loops can be nested, though if combined with other types of loops, the maximum nested loop number may vary due to the memory capacity.

Note: Else clause cannot be omitted when the matching If clause is contained in a For or a While loop.

11 Gosub
12 Return
Gosub label name

End
Chapter 11: Programming Features

Subroutine structures can be used for programming.

- The Gosub label name must be the same as the Label starting the subroutine.
- A Return statement is necessary at the end of the subroutine.
 When the Return statement is executed, the calculator executes the next line after the Gosub statement.
- Up to 10 subroutines can be nested.

7. Other menus convenient for programming

H COPY menu

You can copy and paste line by line using the COPY menu commands.

1. Move the cursor to the line that you wish to copy.

2. Press \(\text{PRGM} \ H \).

3. Select 1 StoLine and press \(\text{ENTER} \).
 The selected line will be stored in the memory.

4. Move the cursor to the line where you wish to paste the stored line.

5. Press \(\text{PRGM} \ H \), select 2 RclLine and press \(\text{ENTER} \).
 The stored line will be inserted at the targeted position.

- Please note that only a single line can be stored in the memory.
VARS menu

- Functions that control the graph screen can be selected from the VARS menu.
- Press [2ndF] [VARS] to display the VARS menu (shown to the right).

A EQVARS Specifies the graph equation (Y1 to Y9, and Y0, X1T•Y1T to X6T•Y6T, R1 to R6).

B WINDOW Specifies the functions that set the graph display screen size (Xmin, Ymax, Tstep, etc.).

C STOWIN Specifies the stored zoom (window) setting value (Zm_Xmin, Zm_Ymax, etc.).

D L_DATA Specifies list data (L_Data1 to L_Data9, and L_Data0).

E G_DATA Specifies the graph data (G_Data1 to G_Data9, and G_Data0).

F PICTUR Specifies picture data (Pict1 to Pict9, and Pict0).

G TABLE Specifies table setting values (Table Start, Table Step, Table List).

H STAT Specifies statistics, functions (\bar{x}, \sum x, \bar{y} ...), regression expressions, points and statistical verification functions.

- The commands and functions in the VARS menu can be displayed on the screen. Current setting data can also be reset.
- The results of arithmetic functions can also be displayed.
- The ZOOM command is selected directly from the ZOOM menu.

Names of some ZOOM commands change when inserted into programs. These are [A ZOOM], [C POWER], [D EXP], [E TRIG], and [F HYP] of the ZOOM menu.

“Zm_” is automatically added to each of these functions when inserted into programs.

Example
Zm_Auto, Zm_x^2, Zm_sin, etc.
Chapter 11: Programming Features

- Always enter the argument for functions requiring an argument at the end of the command, such as the CALC function (\(\text{CALC}\)). An error will be returned for commands not accompanied by an argument.

Example

Value 5

Example

Set \(X_{\text{min}} = -3, X_{\text{max}} = 10, X_{\text{scl}} = 1, Y_{\text{min}} = -5, Y_{\text{max}} = 5, Y_{\text{scl}} = 1\) in the WINDOW screen.

Use \(\text{STO}\) to input the settings.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Operational sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 (\Rightarrow) (X_{\text{min}})</td>
<td>((-) 3 \text{STO} 2ndF \text{VARS} B \text{ENTER} A 1 \text{ENTER})</td>
</tr>
<tr>
<td>10 (\Rightarrow) (X_{\text{max}})</td>
<td>(10 \text{STO} 2ndF \text{VARS} \text{ENTER} 2 \text{ENTER})</td>
</tr>
<tr>
<td>1 (\Rightarrow) (X_{\text{scl}})</td>
<td>(1 \text{STO} 2ndF \text{VARS} \text{ENTER} 3 \text{ENTER})</td>
</tr>
<tr>
<td>-5 (\Rightarrow) (Y_{\text{min}})</td>
<td>((-) 5 \text{STO} 2ndF \text{VARS} \text{ENTER} 4 \text{ENTER})</td>
</tr>
<tr>
<td>5 (\Rightarrow) (Y_{\text{max}})</td>
<td>(5 \text{STO} 2ndF \text{VARS} \text{ENTER} 5 \text{ENTER})</td>
</tr>
<tr>
<td>1 (\Rightarrow) (Y_{\text{scl}})</td>
<td>(1 \text{STO} 2ndF \text{VARS} \text{ENTER} 6 \text{ENTER})</td>
</tr>
</tbody>
</table>

* Operation to input a function equation (for example, \(x^2 + 2\)) to the graphic equation “Y1” is also made using \(\text{STO}\) in the same manner as described above.

\[“x^2 + 2” \Rightarrow Y1: \text{PRGM} A 2 x^2 + 2 \text{PRGM} \]

Note: Function equations cannot be assigned in the graphic equations, such as Y1, if the EDITOR mode under SET UP is set to Equation. Switch the EDITOR to One line mode prior to assigning such graphic equations.

Example

The following data are included in list L1.

L1: 165, 182.5, 173.8, 166.5, 185.3

A one-variable calculation was executed based on this data.

After returning to the calculation screen, average values can be viewed by using the following procedure.
Chapter 11: Programming Features

8. Debugging

After programming, it is required to debug the program.

1. Press \[\text{PRGM} \ A\] and select the program to debug.

If any bugs are present, error messages will appear.

The following example indicates that the same label name has been used two or more times.

2. Press \[\text{\downarrow} \text{ or } \text{\uparrow}\] to display the line where the error exists and correct the mistake.

When an infinite loop occurs

Execution can be interrupted by pressing \[\text{ON}\].

Use this command if the program enters an infinite loop. Press \[\text{\downarrow} \text{ or } \text{\uparrow}\] to display the program source with the cursor on the line where interrupted.

* Refer to Appendix 4 “Error Codes and Error Messages” on page 235.

* It is highly recommended that goto-Label statements are not used in If, While and For loop structures.

* Multiple statements cannot be used in a command line such as Else, EndIf, Next, While and WEnd. It is recommended not to use multiple statements.
9. Preinstalled program

There is one preinstalled program ("integral").

Calculating the area between graphs for a given interval

Integral

- Enter necessary equations before executing this program.

1. Press PRGM A 0 1.
2. Press 1 to select “∫Y1dx”, 2 to select “∫Y1-Y2dx” or 3 to select "AREA BETWEEN Y1-Y2" to avoid the surface cancel each other.
3. Press 1 ~ 3 to select the first equation, and then press 1 ~ 3 to select the second equation, if needed.
4. Input a lower value while “LOWER=” is displayed, then press ENTER.
5. Input an upper value while “UPPER=” is displayed, then press ENTER.

The calculation result is displayed with highlighted graph.

6. Press ENTER to display the calculation result without the graph.

Errors and calculation ranges

- If “ERROR” is displayed instead of a calculation result, press ENTER, then enter the numeric values again.

- If a screen like the one shown on the right is displayed during calculation or after you exit the program, press CL.

Please do not press ← or → instead of [CL]. The editing screen will be displayed if you press ← or →. Press [Quit] at this time to exit the editing screen.
Calculation ranges are illustrated below.

<table>
<thead>
<tr>
<th>Program name</th>
<th>Calculation range</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>integral</td>
<td>$X_{\text{min}} \leq \text{LOWER} \leq X_{\text{max}}$</td>
<td>X_{min} and X_{max} are in the windows settings.</td>
</tr>
<tr>
<td></td>
<td>$X_{\text{min}} \leq \text{UPPER} \leq X_{\text{max}}$</td>
<td></td>
</tr>
</tbody>
</table>

Storage locations of the calculation result
This program calculate by using the variables below. Therefore, please note that some numbers are stored in these variables if you execute the program.

<table>
<thead>
<tr>
<th>Program name</th>
<th>Variable</th>
<th>Storage location of the calculation result</th>
</tr>
</thead>
<tbody>
<tr>
<td>integral</td>
<td>A, B, C, D, E, M, S, T</td>
<td>C</td>
</tr>
</tbody>
</table>

Note: This program will not be deleted by resetting the calculator. To delete a program, please refer to “Deleting an entire program” on page 206 in this operation manual. Note that the program will be retrieved if you reset the calculator, even if you have deleted it previously.
Chapter 12
OPTION Menu

The optional products (CE-451L and CE-LK4) are not available in some regions.

The calculator is equipped with OPTION menu for adjusting the display contrast, checking memory usage, deleting stored data, transferring data, and resetting the calculator's memory.

Accessing the OPTION Menu

Press [2ndF] OPTION].
The OPTION Menu will appear.

A: Adjusts the display contrast
B: Checks the memory usage
C: Deletes files
D: Link command to use with another calculator or PC.
E: Resets the calculator

1. Adjusting the screen contrast

The screen contrast setting window will appear.
2. Press + to darken or - to lighten the screen.

2. Checking the memory usage

The memory usage window enables you to check how much memory you have used. If the memory is nearly full, delete files or reset the calculator to operate safely.

2. Press B.
The memory check window will appear. The remaining number of bytes of user memory will be shown on the display.

The user memory is used to store data for graph equations, graph screens, matrices, lists and so on.

The memory window shows the software version of the calculator as well. If a new software version will be released, it can be uploaded to EL-9950 by the PC link software.
3. If you want to check the details, press **ENTER**. The detailed memory usage window will appear. The total remaining memory will appear on the bottom line of the screen.

4. Press **▼** to scroll the window.

List:	The amount of memory (bytes) used by lists
Matrix:	The amount of memory (bytes) used by matrices
Graph Eqn:	The amount of memory (bytes) used by graph equations
Solver Eqn:	The amount of memory (bytes) used by solver equations
Program:	The amount of memory (bytes) used by program files
Picture:	The amount of memory (bytes) used by graph pictures
G_Data:	The amount of memory (bytes) used by stored graph data
L_Data:	The amount of memory (bytes) used by stored list data
Slide:	The amount of memory (bytes) used by slide shows the user has created
3. Deleting files

Press \[2ndF\text{OPTION}C\] to enter the delete menu.

The sub-menu items are the same as those of the Memory Check menu (List, Matrix, Graph Eqn, Solver Eqn, Program, Picture, G_Data, L_Data and Slide).

Deletions can be executed entry by entry.

To delete the matrix mat C

1. Press \[2ndF\text{OPTION}C\] 2.

The matrix deletion window will appear with the cursor pointer at the top (mat A).

2. Move the cursor pointer to mat C using \[\uparrow/\downarrow\].

3. Press \[\text{ENTER}\].

mat C will disappear and the mat C line will become empty.

- Press \[2ndF\text{QUIT}\] to cancel the delete option.
- Above procedures and displays are only an example. Displayed items may vary according to data input and use.

* Press \[2ndF\text{OPTION}C\] 0 to delete the memories previously entered.

4. Linking to another EL-9950 or PC

The optional products (CE-451L and CE-LK4) are not available in some regions.

Using the optional CE-451L or CE-LK4, the EL-9950 can be linked to another EL-9950.

To transfer data, press \[2ndF\text{OPTION}D\] to open the Link option window. Press \[1\] to send data and press \[2\] to receive data.

Transmission between EL-9950's

1. Connect the calculators securely using the optional CE-451L communication cable.

- Make sure the communication cable is firmly inserted into the ports of both calculators.

* Use the communication cable only for linking two EL-9950's. The EL-9950 can only be linked to another EL-9950.
2. Press \(\text{2ndF} \text{ OPTION D} \) on both calculators.

3. Press \(2 \) on the receiving machine.
 The receive mode screen will appear on the display.

4. Press \(1 \) on the sending machine.

5. The send menu will appear on the display. Specify the data to send from the following categories.

A SELECT Displays the menu window to send the data specified as follows:

- **01 ALL** Displays a list of all the stored files category by category.
- **02 List** Displays a list of all the stored list files.
- **03 Matirx** Displays a list of all the stored matrix files.
- **04 Graph Eqn** Displays a list of all the stored graph equations.
- **05 Solver Eqn** Displays a list of all the stored solver equations.
- **06 Program** Displays a list of all the stored program files.
- **07 G_Data** Displays a list of all the stored graph data files.
- **08 L_Data** Displays a list of all the stored list data files.
- **09 Picture** Displays a list of all the stored picture files.
- **10 Slide** Displays a list of all the user-made slide show data.
- **11 A - Z, \(\theta \)** Displays a list of variables A to Z and \(\theta \).

B BACKUP Send all the data stored in the calculator memory.
Chapter 12: OPTION Menu

6. Select the item to send using \(\text{ téc } / \text{ véc } \) and pressing [ENTER]. A "✱" will be placed by the selected item.

7. Press [2ndF] [ENTER] to send.

8. Transmission begins and a busy message will appear on the displays of the both calculators.

• An data in the same memory locations in the receiver will be automatically overwritten.

• Up to 10 files can be selected to send at once.

Example
If you wish to send the list L1, matrices mat A and mat B and graph equation Y2 to the other calculator.

1. Prepare the receiving calculator by pressing [2ndF] [OPTION] [D] [2].

2. Press [2ndF] [OPTION] [D] [1] on the sending calculator.

 The send menu will appear.

3. Press [0] [1].

 A list of all the data stored will be displayed and the cursor positioned on the top line.

 • You can also select 02 List for “L1”, 03 Matrix for “mat A” and “mat B”, and 04 Graph Eqn for “Y2”, for example, and send the data category by category.

4. Move the cursor to L1 and press [ENTER].

 A “✱” mark will flash to the left of “L1”, indicating that the item has been selected to be sent.

 Press [ENTER] again to deselect.

5. Select the other files you wish to send in the same manner.

6. Press [2ndF] [ENTER] to start transmission.
Chapter 12: OPTION Menu

Transmission between the EL-9950 and PC

• The optional kit CE-LK4 (cable and Windows software) is required for calculator to data communication with PC.

 And “SHARP CE-LK4 for EL-9950” (PC-Link software) must be installed on your Windows PC.

• Refer to the CE-LK4 operation manual for details.

• During communications between calculator and PC, no operation of the calculator is required. Just connect the cable and press the power on key, and the entire operation can be controlled from the PC.

• CE-LK4 can also be utilized to update the calculator’s software.

5. Reset function

If a problem occurs after replacing batteries, or the calculator does not function correctly, use the RESET option.

1. Press \text{2ndF} \text{OPTION} \text{E}.

2. Press \text{1} to return the calculator’s SETUP and FORMAT settings to the default value, or \text{2} to delete all the stored data.

See “Resetting the Calculator” on page 47 for details.
Appendix

1. Replacing Batteries

The calculator uses two different kinds of batteries: manganese (AAA) for unit operation, and lithium (CR2032) for memory backup.

Compatible battery types

<table>
<thead>
<tr>
<th>Type (use)</th>
<th>Model</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese battery (for unit operation)</td>
<td>AAA</td>
<td>4</td>
</tr>
<tr>
<td>Lithium battery (for memory backup)</td>
<td>CR2032</td>
<td>1</td>
</tr>
</tbody>
</table>

Note:
- To prevent loss of stored data, **DO NOT remove both the unit operation and memory backup batteries at the same time.**
- Please do not use rechargeable battery. This can lead to a malfunction of the device.
- Batteries are factory-installed before shipment, and may be exhausted before they reach the service life stated in the specifications.

Precautions for handling batteries
- Fluid from a leaking battery accidentally entering an eye could result in serious injury. Should this occur, wash with clean water and immediately consult a doctor.
- Should fluid from a leaking battery come into contact with your skin or clothes, immediately wash with clean water.
- If the product is not to be used for some time, to avoid damage to the unit from leaking batteries, remove them and store in a safe place.
- Do not leave exhausted batteries inside the product.
- Do not fit partially used batteries, and be sure not to mix different batteries types.
- Keep batteries out of the reach of children.
- Do not allow batteries to become completely exhausted; doing so may cause the batteries to leak, and may damage the calculator's hardware.
- Do not throw batteries into a fire or water, as this may cause them to explode.

When battery power becomes low, a message will show indicating that a new set of batteries are needed.

1. Turn off the calculator’s power (2ndF OFF).
2. Turn over the calculator.
 Locate the battery compartment cover, and open the cover as illustrated.
3. Replace all four AAA batteries as illustrated.

Note: Do not remove the lithium battery while the unit operation batteries are removed; otherwise all the calculator’s stored memory will be lost.
4. Replace the battery compartment cover.
5. After a few seconds, press ON.
 The following message will appear.
 If the message does not appear, repeat the procedures from step 2.
6. Press ON.
 Do not press CLR. This will clear all the data.

Once every 5 years, the lithium battery will need to be replaced.
The lithium battery is used to maintain the memory of the calculator.
Appendix

1. Perform procedures 1 and 2, as shown above. Do not remove the unit operation batteries.

2. Remove the screw and the lithium battery cover, as shown.

3. Use a pen to lift the lithium battery out of the battery compartment.

4. Insert the new battery with the PLUS (+) side facing up.

5. Replace the lithium battery cover and fasten the screw.

6. Replace the battery compartment cover, wait a few seconds and then press [ON]. The following message will appear.

7. Press [ON].

 Do not press [CL]. This will clear all the data.
2. Troubleshooting Guide

Refer to the list of possible symptoms, and solutions may be found here.

The calculator’s power won’t turn on!
- The operation batteries may not be installed, may be exhausted, or may be inserted incorrectly. Check the operation batteries in the battery compartment.
- Place the battery cover securely or the calculator will not turn on.

The saved calculator configurations are not retained!
- Both the lithium battery and the operation batteries may need to be replaced.

The power seems to be on, but the characters and numbers cannot be seen clearly on the display!
- Press \[\texttt{2ndF} \texttt{OPTION}\], then press \[\texttt{A}\] to enter \texttt{A CTRST}; the screen contrast can be adjusted by using the \[\texttt{+}\] or the \[\texttt{−}\] key.

The calculator won’t take the minus (-) sign; calculation results in a syntax error!
- To set a negative value, use the \[\texttt{(-)}\] key instead of the \[\texttt{−}\] key.

The calculation results are very different from what is usually expected!
- The angle unit and other configurations may be incorrectly set. Check the configuration under the \[\texttt{2ndF} \texttt{SETUP}\].

The graph cannot be seen!
- Check the zoom configuration. Try selecting the automatic zoom tool, by pressing \[\texttt{ZOOM}\], then \[\texttt{A 1}\].
- The graph line may be set differently; check the line configuration under \[\texttt{2ndF} \texttt{DRAW}\] menu.
- The calculator may not be set to display graphs. Check the “=” sign in \texttt{Y=} screen.
- Graphs drawings may be interrupted in rare cases when equations of Graphs have a list format.
Appendix

The screen images cannot be stored (SLIDE SHOW)

- The available memory may be too small to store the screen image. Select “B MEMCHK” under [2ndF] [OPTION] menu. Select and delete unnecessary items under “C DEL”.

The calculator is not responding; the software appears to have crashed!

- Press [ON]. If this does not work, then press [2ndF], then [ON] to tell the running application to quit.

If everything fails, then the calculator’s memory may need to be reset. Resetting the calculator's memory will clear all the stored information, such as programs, lists, and variables.

To reset the unit’s memory, open and close the battery compartment cover, wait a few seconds, and then press [ON] to open the verification window. To prevent data loss, try [ON] first. If it does not work, repeat the reset operation and press [CL] when prompted.
3. Specifications

Model
EL-9950

Product name
Graphing Calculator

Display
132 x 64 dot matrix liquid crystal display
Number of digits: mantissa 10 digits, exponents 2 digits
(standard screen); 7 digit display (including negatives, decimals) for table screen, split screen, etc.
Mantissa of 10 digits in the complex number mode
Display method: Numerical value, calculation equation input
(direct algebraic logic input / one-line input method), fraction, and complex number display method specification.

Calculation method
D.A.L. (Direct Algebraic Logic)

Calculation features
Manual calculation (arithmetic, parentheses calculation, memory calculation, function calculation, integral calculation, coordinate conversion), binary/octal/decimal/hexadecimal calculation, Boolean operation, matrix calculation, complex number calculation, complex function calculation, statistic calculation, regression calculation, statistic authorization calculation, financial calculation, etc.

Input method
Manual key entry

Graphic features
Rectangular/polar/parametric/sequence coordinate graph
Graph range specification, graph window mode automatic specification, graph plotting, trace, calculation function, zoom, picture input, paint, graph database register split-screen, etc.

Statistic features
1-/2-variable statistical data input/calculation, register, edit and frequency input, regression calculation function, and estimated statistic/authorization function, etc.

Solver features
Equation solver: numerical syntax analysis, Newton & bisection method, graph analysis, and solver equation register.
Appendix

List features
Direct data entry/edit to list, calculation function for various lists, and list/matrix conversion.

Substitution features
Graph drawing, numerical input from split-screen

Slide Show features
Screen image capture, play function

Program features
Condition statement command, subroutine, graph, various function commands

Option menu
Screen contrast adjustment, memory usage check, data delete, data link (between EL-9950 and PC or another EL-9950)

Memory size
64 KB (user area: approx. 47.4 KB)

Power supply
Operation: 6 V DC:: AAA manganese battery (R03) × 4
Memory backup: 3 V DC:: Lithium battery (CR2032) × 1

Automatic power-off
Approx. 10 minutes

Operating temperature range
0 °C to 40 °C (32 °F to 104 °F)

Battery life
Operation battery set: approx. 150 hours (with 5 minutes of continual use and 55 minutes in the display state for every hour at a temperature of approx. 20 °C/68 °F)

Memory backup: approx. 5 years (at a temperature of approx. 20 °C/68 °F, and when the operation batteries are replaced frequently)

Note:
The life span may differ according to battery brand, type, usage, and ambient temperature.

External dimensions
86 mm (W) × 183 mm (D) × 20 mm (H)
3-3/8” (W) × 7-7/32” (D) × 25/32” (H)

Weight
Approx. 202 g (0.45 lb) (with batteries, without the hard cover)

Accessories
4 AAA manganese batteries (included), 1 lithium battery (installed), hard cover, operation manual
4. Error Codes and Error Messages

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Syntax</td>
<td>Syntax error found in equation/program</td>
</tr>
<tr>
<td>02</td>
<td>Calculate</td>
<td>Calculation-related error found (division by 0, calculation beyond range, etc.)</td>
</tr>
<tr>
<td>03</td>
<td>Nesting</td>
<td>Cannot nest more than 14 numerical values, or 32 functions during execution. Graph equation variables (Y1, etc.) includes other graph equation variables (Solver features).</td>
</tr>
<tr>
<td>04</td>
<td>Invalid</td>
<td>Matrix definition error or entering an invalid value.</td>
</tr>
<tr>
<td>05</td>
<td>Dimension</td>
<td>Matrix dimension, or STAT list dimension, inconsistent.</td>
</tr>
<tr>
<td>07</td>
<td>Invalid DIM</td>
<td>Size of list/matrix exceeds calculation range.</td>
</tr>
<tr>
<td>08</td>
<td>Argument</td>
<td>Inconsistency found in argument of the structured function.</td>
</tr>
<tr>
<td>09</td>
<td>Data Type</td>
<td>Invalid data type used in calculation.</td>
</tr>
<tr>
<td>10</td>
<td>No Sign Change</td>
<td>Financial calculation error found.</td>
</tr>
<tr>
<td>11</td>
<td>No define</td>
<td>Undefined list/matrix used in calculation. Undefined graph equation variables used in Solver features.</td>
</tr>
<tr>
<td>12</td>
<td>Domain</td>
<td>Argument definition outside of domain.</td>
</tr>
<tr>
<td>13</td>
<td>Increment</td>
<td>Increment error found.</td>
</tr>
<tr>
<td>16</td>
<td>Irr Calc</td>
<td>More than two inflection points for Irr calculation.</td>
</tr>
<tr>
<td>20</td>
<td>No Argument</td>
<td>Argument missing.</td>
</tr>
<tr>
<td>21</td>
<td>Not pair ∫ dx</td>
<td>∫ and dx are not used in a pair.</td>
</tr>
<tr>
<td>22</td>
<td>Not pair []</td>
<td>Brackets are not used in a pair.</td>
</tr>
<tr>
<td>23</td>
<td>Not pair ()</td>
<td>Parentheses are not used in a pair.</td>
</tr>
<tr>
<td>24</td>
<td>Not pair { }</td>
<td>Braces are not used in a pair.</td>
</tr>
<tr>
<td>25</td>
<td>Line over</td>
<td>Line is over the capacity.</td>
</tr>
<tr>
<td>26</td>
<td>Not delete</td>
<td>Unable to delete a selected item.</td>
</tr>
<tr>
<td>27</td>
<td>Buffer over</td>
<td>Input/equation exceeds buffer capability.</td>
</tr>
<tr>
<td>30</td>
<td>Editor type</td>
<td>Invalid editor type found.*</td>
</tr>
<tr>
<td>31</td>
<td>Continue =</td>
<td>“ = “ exists in equation that has been recalled (RCL).</td>
</tr>
<tr>
<td>32</td>
<td>No data</td>
<td>Data does not exist.</td>
</tr>
<tr>
<td>33</td>
<td>Graph Type</td>
<td>Graph type setting incorrect.</td>
</tr>
<tr>
<td>34</td>
<td>Too many var.</td>
<td>Too many variables assigned in the SOLVER.</td>
</tr>
<tr>
<td>35</td>
<td>No variable</td>
<td>No variable specified in the SOLVER.</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>No solution</td>
<td>No solution found.</td>
</tr>
<tr>
<td>37</td>
<td>No title</td>
<td>No title entered.</td>
</tr>
<tr>
<td>38</td>
<td>Too many obj</td>
<td>More than 30 objects selected.</td>
</tr>
<tr>
<td>40</td>
<td>Lbl duplicate</td>
<td>Labels with identical name found in program.</td>
</tr>
<tr>
<td>41</td>
<td>Lbl undefined</td>
<td>Goto/Gosub encountered with no defined label.</td>
</tr>
<tr>
<td>42</td>
<td>Lbl over</td>
<td>More than 50 labels found in program.</td>
</tr>
<tr>
<td>43</td>
<td>Gosub stack</td>
<td>Nesting of more than 10 subroutines found.</td>
</tr>
<tr>
<td>44</td>
<td>Line too long</td>
<td>Line contains more than 160 characters.</td>
</tr>
<tr>
<td>45</td>
<td>Can’t return</td>
<td>Return used without jumping from subroutine.</td>
</tr>
<tr>
<td>46</td>
<td>Storage full</td>
<td>Cannot create more than 99 files.</td>
</tr>
<tr>
<td>47</td>
<td>Coord type</td>
<td>Invalid coordinate system for command.</td>
</tr>
<tr>
<td>48</td>
<td>Without For</td>
<td>For is missing corresponding to the Next command.</td>
</tr>
<tr>
<td>49</td>
<td>Without WEnd</td>
<td>WEnd is missing corresponding to the While command.</td>
</tr>
<tr>
<td>50</td>
<td>Without While</td>
<td>While is missing corresponding to the WEnd command.</td>
</tr>
<tr>
<td>51</td>
<td>Without Then</td>
<td>Then is missing corresponding to the If command.</td>
</tr>
<tr>
<td>52</td>
<td>Without EndIf</td>
<td>EndIf is missing corresponding to the If command.</td>
</tr>
<tr>
<td>53</td>
<td>Without If</td>
<td>If is missing corresponding to the EndIf command.</td>
</tr>
<tr>
<td>70</td>
<td>I/O device</td>
<td>Communication error found among devices.</td>
</tr>
<tr>
<td>71</td>
<td>Wrong Mode</td>
<td>Wrong communication mode set.</td>
</tr>
<tr>
<td>90</td>
<td>Memory over</td>
<td>Memory is full; cannot store data as requested.</td>
</tr>
<tr>
<td>99</td>
<td>System error</td>
<td>System error found; user memory space is insecure.</td>
</tr>
<tr>
<td></td>
<td>Low battery</td>
<td>Operation interrupted due to low battery power.</td>
</tr>
<tr>
<td></td>
<td>BREAK!!</td>
<td>Operation break specified.</td>
</tr>
</tbody>
</table>

* The following operations may cause Editor type error. Correct the Editor type to continue.

- Recall the SOLVER equations (EQTN) or Graph data (G_DATA) stored in a different EDITOR mode than currently in use.
- Receive the Graph equation (Y1 and others) entered in a different EDITOR mode than currently in use.
5. Error Conditions Relating to Specific Tasks

1. Financial
 * Define constants “r” and “s” as used in the equation below.

 \[
 r = \left(\frac{1 (\%)}{100} \cdot \frac{C/Y}{P/Y} + 1 \right) - 1, \begin{cases} S = 1 \text{ (Pmt}_\text{Begin}) \\ S = 0 \text{ (Pmt}_\text{End}) \end{cases}
 \]

1. I% calculation
 1. If PMT = 0
 \[
 r = \left(\frac{PV}{FV} \right) - 1
 \]
 2. If PMT ≠ 0
 \[
 f (r) = PV + (1 + r \times s) \times PMT \times \frac{1 - (1 + r)^n}{r} + FV \times (1 + r)^n: (r ≠ 0)
 f (r) = PV + PMT \times n + FV: (r = 0)
 \]

 calculate the following for r solved in 1 and 2
 \[
 I (\%) = 100 \times \frac{P/Y}{C/Y} \times (r + 1)^{P/Y} - 1
 \]

2. PV calculation
 1. If r ≠ 0, r > -1
 \[
 PV = -(1 + r \times s) \times \frac{1 - (1 + r)^n}{r} \times PMT - FV \times (1 + r)^n
 \]
 2. If r = 0
 \[
 PV = -n \times PMT - FV
 \]
 3. If r ≤ -1
 Error
Appendix

3. FV calculation
1. If \(r \neq 0, r > -1 \)
 \[
 FV = -\left(PV + \frac{(1 + r \times s) \times \left(1 - \frac{1}{r} \right) \times PMT}{(1 + r)^n} \right)
 \]
2. If \(r = 0 \)
 \[
 FV = -n \times PMT - PV
 \]
3. If \(r \leq -1 \)
 Error

4. PMT calculation
1. If \(r \neq 0, r > -1 \)
 \[
 PMT = -\frac{PV + FV \times (1 + r)^n}{(1 + r \times s) \times \left(1 - \frac{1}{r} \right) \times PMT - FV}
 \]
2. If \(r = 0 \)
 \[
 PMT = \frac{PV + FV}{n}
 \]
3. If \(r \leq -1 \)
 Error

5. N calculation
1. If \(r \neq 0, r > -1 \)
 \[
 N = -\frac{\log \left(\frac{PV + \frac{1}{r} \times (1 + r \times s) \times PMT}{\frac{1}{r} \times (1 + r \times s) \times PMT - FV} \right)}{\log (1 + r)}
 \]
2. If \(r = 0 \)
 \[
 N = -\frac{FV + PV}{PMT}
 \]
3. If \(r \leq -1 \)
 Error
2. Error conditions during financial calculations

• $r \leq -1$
• $N = 0$ in PMT calculations
• $I\% = 0$ and $PMT = 0$, or $I\% \neq 0$ and $FV = (1/r) (1 + r \times s) \times PMT$, in N calculations.

 \[
 s = 1 \quad \text{(Pmt}_\text{Begin}) \\
 s = 0 \quad \text{(Pmt}_\text{End})
 \]

In $I\%$ calculations

If $PMT > 0$:

- Pmt_End mode: $PV \geq 0$ and $FV + PMT \geq 0$
 $PV < 0$ and $FV + PMT < 0$
- Pmt_Begin mode: $PV + PMT \geq 0$ and $FV \geq 0$
 $PV + PMT < 0$ and $FV < 0$

If $PMT < 0$:

- Pmt_End mode: $PV > 0$ and $FV + PMT > 0$
 $PV \leq 0$ and $FV + PMT \leq 0$
- Pmt_Begin mode: $PV + PMT > 0$ and $FV > 0$
 $PV + PMT \leq 0$ and $FV \leq 0$

If $PMT = 0$: $PV \div FV \geq 0$

• FV, $N \times PMT$, $PV \geq 0$ or FV, $N \times PMT$, $PV \leq 0$
• Irr calculation: all cash flows have the same sign.

3. Distribution function

1. pdfnorm(

$f (x) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2} \right)$

Calculation result $\rightarrow X_{reg}$

μ: Mean

σ: Standard deviation

2. pdfT(

$f (x) = \frac{\Gamma \left(\frac{df + 1}{2} \right) \left(1 + \frac{x^2}{df} \right)^{\frac{df + 1}{2}}}{\Gamma \left(\frac{df}{2} \right) \sqrt{\pi df}}$

However: $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} \, dx$

Calculation result $\rightarrow X_{reg}$

\[\text{Appendix} \]
Appendix

3 pdf χ^2

$$f (\chi^2, df) = \frac{1}{2^{\frac{df}{2}} \Gamma (\frac{df}{2})} (\frac{\chi^2}{2})^{\frac{df}{2} - 1} e^{-\frac{\chi^2}{2}}$$

However: $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$

df: Degree of freedom

4 pdf F

$$f (x) = \frac{\Gamma (\frac{m+n}{2})}{\Gamma (\frac{m}{2}) \Gamma (\frac{n}{2})} \left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2} - 1} (1 + \frac{mx}{n})^{-\frac{m+n}{2}}$$

However: $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$

m: Degree of freedom of numerator
n: Degree of freedom of denominator

5 pdf bin

$$P (x = 0) = (1 - p)^n$$
$$P (x = c + 1) = \frac{(n - c) p}{(c + 1)(1 - p)} P (x = c)$$

(c = 0, 1, ..., n - 1)

n: Trial number (integers greater than 0)
p: Success probability (0 ≤ p ≤ 1)
c: Success number

6 pdf pois

$$f (x) = \frac{e^{-\mu} \mu^x}{x!}$$

(x = 0, 1, 2, ...)

7 pdf geo

$$f (x) = p (1 - p)^{x-1}$$

x: First successful trial number
6. Calculation Range

1. Arithmetic calculation

The results for dividend, multiplicand and operand are:

\[-1 \times 10^{100} < x \leq -1 \times 10^{99}, 1 \times 10^{99} < x \leq 1 \times 10^{100} \text{ or } x = 0\]

(valid within the range of display capability)

Note: Calculation results and input values less than \(1 \times 10^{99}\) are considered equal to 0.

2. Function calculation

Calculation accuracy

In principle, calculation errors are ±1 of the last digit. (In case of exponential display, the calculation errors are ±1 of the last digit of the mantissa display.) However, a calculation error increases in continuous calculations due to accumulation of each calculation error. (This is the same for \(a^b, \sqrt[n]{b}, n!, e^x, \ln\), etc. where continuous calculations are performed internally.) Additionally, a calculation error will accumulate and become larger in the vicinity of inflection points and singular points of functions. (for example, calculating \(\sinh X\) or \(\tanh X\) at \(X = 0\))

<table>
<thead>
<tr>
<th>Function</th>
<th>Calculation range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin x) (\cos x) (\tan x)</td>
<td>(\text{DEG : }</td>
<td>x</td>
</tr>
<tr>
<td>(\sin^{-1} x) (\cos^{-1} x)</td>
<td>(-1 \leq x \leq 1)</td>
<td></td>
</tr>
<tr>
<td>(\tan^{-1} x)</td>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>(\sinh x) (\cosh x) (\tanh x)</td>
<td>(-230.2585093 \leq x \leq 230.2585092)</td>
<td></td>
</tr>
<tr>
<td>(\sinh^{-1} x) (\cosh^{-1} x) (\tanh^{-1} x)</td>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>Function</td>
<td>Calculation range</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>(\ln x)</td>
<td>(1 \times 10^{-99} \leq x < 1 \times 10^{100})</td>
<td>(\ln x = \log_e x)</td>
</tr>
<tr>
<td>(\log x)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(e^x)</td>
<td>(-1 \times 10^{100} < x \leq 230.2585092)</td>
<td>(e^{-}=2.71828\ldots)</td>
</tr>
<tr>
<td>(10^x)</td>
<td>(-1 \times 10^{100} < x < 100)</td>
<td></td>
</tr>
<tr>
<td>(x^{-})</td>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>(x^2)</td>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>(\sqrt{x})</td>
<td>(0 \leq x < 1 \times 10^{100})</td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td>(-0.5 \leq n \leq 69.5)</td>
<td>(n) is an integer or integer (+ 0.5)</td>
</tr>
<tr>
<td>(a^b) ((^\wedge))</td>
<td>When (a > 0): (-1 \times 10^{100} < b \log a < 100) When (a = 0): (0 < b < 1 \times 10^{100}) When (a < 0): (b) is an integer, or (\frac{1}{b}) is an odd number ((b \neq 0)) However, (-1 \times 10^{100} < b \log</td>
<td>a</td>
</tr>
<tr>
<td>(\sqrt[n]{b})</td>
<td>When (b > 0): (-1 \times 10^{100} < \frac{1}{a} \log b < 100) When (b = 0): (0 < a < 1 \times 10^{100}) When (b < 0): (a) is an odd number, or (\frac{1}{a}) is an integer ((a \neq 0)) However, (-1 \times 10^{100} < -\frac{1}{a} \log</td>
<td>b</td>
</tr>
<tr>
<td>(nPr)</td>
<td>(0 \leq r \leq n \leq 9999999999) When (r < \frac{n}{2}): (\frac{n!}{(r-1)!(n-r)!} \times 10^{100}) When (\frac{n}{2} \leq r): (\frac{n!}{r!(n-r-1)!} \times 10^{100})</td>
<td>(n) and (r) are positive integers</td>
</tr>
<tr>
<td>(nCr)</td>
<td>(0 \leq r \leq n \leq 9999999999) (\frac{n!}{(n-r)!} < 10^{100})</td>
<td></td>
</tr>
</tbody>
</table>

242
<table>
<thead>
<tr>
<th>Function</th>
<th>Calculation range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>dec</td>
<td>Decimal: (</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Binary: (1000000000000000 \leq x \leq 1111111111111111)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Octal: (4000000000 \leq x \leq 7777777777)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexadecimal: (\text{FDABF41C01} \leq x \leq \text{FFFFFFFEFFFF})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 (\leq x \leq 2540\text{BE3FF})</td>
<td></td>
</tr>
<tr>
<td>bin</td>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>oct</td>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>hex</td>
<td>(\sqrt{x^2 + y^2} < 1 \times 10^{100})</td>
<td>(\theta = \tan^{-1} \frac{y}{x})</td>
</tr>
<tr>
<td>dms</td>
<td>(</td>
<td>\frac{y}{x}</td>
</tr>
<tr>
<td>deg</td>
<td>(</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td>(\text{x is an integer})</td>
<td>The range of (\theta) is the same as (x) of (\sin x) and (\cos x)</td>
</tr>
<tr>
<td>not</td>
<td>Binary: (1000000000000000 \leq x \leq 1111111111111111)</td>
<td>Other Boolean operations are the same as not and neg</td>
</tr>
<tr>
<td></td>
<td>Octal: (4000000000 \leq x \leq 7777777777)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexadecimal: (\text{FDABF41C01} \leq x \leq \text{FFFFFFFEFFFF})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 (\leq x \leq 2540\text{BE3FE})</td>
<td></td>
</tr>
<tr>
<td>neg</td>
<td>Binary: (1000000000000001 \leq x \leq 1111111111111111)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Octal: (4000000001 \leq x \leq 7777777777)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexadecimal: (\text{FDABF41C01} \leq x \leq \text{FFFFFFFEFFFF})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 (\leq x \leq 2540\text{BE3FF})</td>
<td></td>
</tr>
</tbody>
</table>
Appendix

Function Calculation

<table>
<thead>
<tr>
<th>Function</th>
<th>Calculation Range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>x</td>
<td>< 1 \times 10^{50}$</td>
</tr>
<tr>
<td>$</td>
<td>y</td>
<td>< 1 \times 10^{50}$</td>
</tr>
<tr>
<td>$</td>
<td>\Sigma x</td>
<td>< 1 \times 10^{100}$</td>
</tr>
<tr>
<td>$</td>
<td>\Sigma y</td>
<td>< 1 \times 10^{100}$</td>
</tr>
<tr>
<td>$</td>
<td>\Sigma x^2</td>
<td>< 1 \times 10^{100}$</td>
</tr>
<tr>
<td>$</td>
<td>\Sigma y^2</td>
<td>< 1 \times 10^{100}$</td>
</tr>
<tr>
<td>$</td>
<td>\Sigma xy</td>
<td>< 1 \times 10^{100}$</td>
</tr>
<tr>
<td>$</td>
<td>n</td>
<td>< 1 \times 10^{100}$</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>$n \neq 0$</td>
<td></td>
</tr>
<tr>
<td>s_x</td>
<td>$n > 1$</td>
<td>$</td>
</tr>
<tr>
<td>σx</td>
<td>$n > 0$</td>
<td>$</td>
</tr>
<tr>
<td>r</td>
<td>$n > 0$</td>
<td>$</td>
</tr>
<tr>
<td>b</td>
<td>$n > 0$</td>
<td>$</td>
</tr>
<tr>
<td>Function</td>
<td>Calculation range</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| a | $|b x| < 1 \times 10^{100}$
$|y - b x| < 1 \times 10^{100}$ | Same as above.
Same as b for other. |
| y' | $|b x| < 1 \times 10^{100}$
$|a + b x| < 1 \times 10^{100}$ | |
| x' | $|y - a| < 1 \times 10^{100}$
$|y - a| / b < 1 \times 10^{100}$ | |
| int÷ remained % | $0 \leq x < 10^{10}$
$0 \leq x < 10^{10}$
$|x| < 10^{100}$ | |
| $\rightarrow a \ b/c$
$\rightarrow b/c$ | $|x| < 10^{10}$ | A number with 10 or less decimal places, or the 10^{10}-th or above decimal places are 0. |
| List | Error is returned when the number of elements exceeds 1000. | This is the same when the result of a list function specifies 1000 or more elements. |
| Matrix | Error is returned when specifying columns or rows that exceed 100.
mat $A^n : n \leq 255$ | |
3. Complex number calculation

In a complex number calculation, a calculation error may occur and increase due to inner continuous calculations.

<table>
<thead>
<tr>
<th>Function</th>
<th>Calculation range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{x + yi}$</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$(x + yi)^2$</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$\ln(x + yi)$</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$\log(x + yi)$</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$\sqrt{x + yi}$</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$e^{(x + yi)}$</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$10^{(x + yi)}$</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$(x + yi)^{a + b}$</td>
<td>$</td>
<td>x</td>
</tr>
</tbody>
</table>
7. List of Menu/Sub-menu Items

CATALOG function lets you access almost all the functions and commands. Square brackets indicate that the value or variable is optional.

1. MATH menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MATH) CALC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log₂</td>
<td>log₂ value</td>
<td>A 0 1</td>
<td>32</td>
</tr>
<tr>
<td>x^n</td>
<td>x value</td>
<td>A 0 2</td>
<td>32</td>
</tr>
<tr>
<td>fmin()</td>
<td>fmin(equation, lower limit of x, upper limit of x)</td>
<td>A 0 3</td>
<td>32</td>
</tr>
<tr>
<td>fmax()</td>
<td>fmax(equation, lower limit of x, upper limit of x)</td>
<td>A 0 4</td>
<td>32</td>
</tr>
<tr>
<td>d/dx()</td>
<td>d/dx(equation, value of x[, tolerance])</td>
<td>A 0 5</td>
<td>32</td>
</tr>
<tr>
<td>∫</td>
<td>∫ equation, lower limit, upper limit [, tolerance] dx</td>
<td>A 0 6</td>
<td>33</td>
</tr>
<tr>
<td>dx</td>
<td>∫ equation, lower limit, upper limit [, tolerance] dx</td>
<td>A 0 7</td>
<td>33</td>
</tr>
<tr>
<td>Σ(</td>
<td>Σ (expression, initial value, end value [, increment])</td>
<td>A 0 8</td>
<td>33</td>
</tr>
<tr>
<td>sec</td>
<td>sec value</td>
<td>A 0 9</td>
<td>33</td>
</tr>
<tr>
<td>csc</td>
<td>csc value</td>
<td>A 1 0</td>
<td>33</td>
</tr>
<tr>
<td>cot</td>
<td>cot value</td>
<td>A 1 1</td>
<td>33</td>
</tr>
<tr>
<td>sec⁻¹</td>
<td>sec⁻¹ value</td>
<td>A 1 2</td>
<td>33</td>
</tr>
<tr>
<td>csc⁻¹</td>
<td>csc⁻¹ value</td>
<td>A 1 3</td>
<td>34</td>
</tr>
<tr>
<td>cot⁻¹</td>
<td>cot⁻¹ value</td>
<td>A 1 4</td>
<td>34</td>
</tr>
<tr>
<td>sinh</td>
<td>sinh value</td>
<td>A 1 5</td>
<td>34</td>
</tr>
<tr>
<td>cosh</td>
<td>cosh value</td>
<td>A 1 6</td>
<td>34</td>
</tr>
<tr>
<td>tanh</td>
<td>tanh value</td>
<td>A 1 7</td>
<td>34</td>
</tr>
<tr>
<td>sinh⁻¹</td>
<td>sinh⁻¹ value</td>
<td>A 1 8</td>
<td>34</td>
</tr>
<tr>
<td>cosh⁻¹</td>
<td>cosh⁻¹ value</td>
<td>A 1 9</td>
<td>34</td>
</tr>
<tr>
<td>tanh⁻¹</td>
<td>tanh⁻¹ value</td>
<td>A 2 0</td>
<td>34</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH NUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs(</td>
<td>abs(value)</td>
<td>B 1</td>
<td>34</td>
</tr>
<tr>
<td>round()</td>
<td>round(value [, digit number of decimals])</td>
<td>B 2</td>
<td>34</td>
</tr>
<tr>
<td>ipart</td>
<td>ipart value</td>
<td>B 3</td>
<td>35</td>
</tr>
<tr>
<td>fpart</td>
<td>fpart value</td>
<td>B 4</td>
<td>35</td>
</tr>
<tr>
<td>int</td>
<td>int value</td>
<td>B 5</td>
<td>35</td>
</tr>
<tr>
<td>min()</td>
<td>min(value A, value B) or min(list)</td>
<td>B 6</td>
<td>35</td>
</tr>
<tr>
<td>max()</td>
<td>max(value A, value B) or max(list)</td>
<td>B 7</td>
<td>35</td>
</tr>
<tr>
<td>lcm()</td>
<td>lcm(natural number, natural number)</td>
<td>B 8</td>
<td>36</td>
</tr>
<tr>
<td>gcd()</td>
<td>gcd(natural number, natural number)</td>
<td>B 9</td>
<td>36</td>
</tr>
<tr>
<td>MATH PROB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>random ([number of trial])</td>
<td>C 1</td>
<td>36</td>
</tr>
<tr>
<td>rndInt(</td>
<td>rndInt(minimum value, maximum value [, number of trial])</td>
<td>C 2</td>
<td>36</td>
</tr>
<tr>
<td>rndNorm(</td>
<td>rndNorm(mean, standard deviation [, number of trial])</td>
<td>C 3</td>
<td>37</td>
</tr>
<tr>
<td>rndBin(</td>
<td>rndBin(number of trial, probability of success [, number of simulatins])</td>
<td>C 4</td>
<td>37</td>
</tr>
<tr>
<td>nPr</td>
<td>value A nPr value B</td>
<td>C 5</td>
<td>37</td>
</tr>
<tr>
<td>nCr</td>
<td>value A nCr value B</td>
<td>C 6</td>
<td>37</td>
</tr>
<tr>
<td>!</td>
<td>value !</td>
<td>C 7</td>
<td>38</td>
</tr>
<tr>
<td>MATH CONV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→deg</td>
<td>value →deg</td>
<td>D 1</td>
<td>38</td>
</tr>
<tr>
<td>→dms</td>
<td>value →dms</td>
<td>D 2</td>
<td>38</td>
</tr>
<tr>
<td>xy→r()</td>
<td>xy→r(x-coordinate, y-coordinate)</td>
<td>D 3</td>
<td>39</td>
</tr>
<tr>
<td>xy→θ()</td>
<td>xy→θ(x-coordinate, y-coordinate)</td>
<td>D 4</td>
<td>39</td>
</tr>
<tr>
<td>r→xy()</td>
<td>r→xy(r-coordinate, θ-coordinate)</td>
<td>D 5</td>
<td>39</td>
</tr>
<tr>
<td>r→θ()</td>
<td>r→θ(r-coordinate, θ-coordinate)</td>
<td>D 6</td>
<td>39</td>
</tr>
<tr>
<td>MATH ANGLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>°</td>
<td>value ° [value°, value°]</td>
<td>E 1</td>
<td>40</td>
</tr>
<tr>
<td>′</td>
<td>value ′ [value ′]</td>
<td>E 2</td>
<td>40</td>
</tr>
<tr>
<td>"</td>
<td>value " [value", value"]</td>
<td>E 3</td>
<td>40</td>
</tr>
<tr>
<td>Print "character strings"</td>
<td>E 4</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Functions Commands</td>
<td>Syntax</td>
<td>Keystrokes</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>g</td>
<td>value g</td>
<td>E 5</td>
<td>40</td>
</tr>
<tr>
<td>MATH INEQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>value A = value B</td>
<td>F 1</td>
<td>40</td>
</tr>
<tr>
<td>≠</td>
<td>value A ≠ value B</td>
<td>F 2</td>
<td>40</td>
</tr>
<tr>
<td>></td>
<td>value A > value B</td>
<td>F 3</td>
<td>40</td>
</tr>
<tr>
<td>≥</td>
<td>value A ≥ value B</td>
<td>F 4</td>
<td>40</td>
</tr>
<tr>
<td><</td>
<td>value A < value B</td>
<td>F 5</td>
<td>40</td>
</tr>
<tr>
<td>≤</td>
<td>value A ≤ value B</td>
<td>F 6</td>
<td>40</td>
</tr>
<tr>
<td>MATH LOGIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>value A and value B</td>
<td>G 1</td>
<td>41</td>
</tr>
<tr>
<td>or</td>
<td>value A or value B</td>
<td>G 2</td>
<td>41</td>
</tr>
<tr>
<td>not</td>
<td>not value</td>
<td>G 3</td>
<td>41</td>
</tr>
<tr>
<td>xor</td>
<td>value A xor value B</td>
<td>G 4</td>
<td>42</td>
</tr>
<tr>
<td>xnor</td>
<td>value A xnor value B</td>
<td>G 5</td>
<td>42</td>
</tr>
<tr>
<td>MATH COMPLEX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conj()</td>
<td>conj(complex number)</td>
<td>H 1</td>
<td>42</td>
</tr>
<tr>
<td>real()</td>
<td>real(complex number)</td>
<td>H 2</td>
<td>42</td>
</tr>
<tr>
<td>image()</td>
<td>image(complex number)</td>
<td>H 3</td>
<td>43</td>
</tr>
<tr>
<td>abs()</td>
<td>abs(complex number)</td>
<td>H 4</td>
<td>43</td>
</tr>
<tr>
<td>arg()</td>
<td>arg(complex number)</td>
<td>H 5</td>
<td>43</td>
</tr>
<tr>
<td>MATH (in the N-base calculation mode) LOGIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>value A and value B</td>
<td>A 1</td>
<td>41</td>
</tr>
<tr>
<td>or</td>
<td>value A or value B</td>
<td>A 2</td>
<td>41</td>
</tr>
<tr>
<td>not</td>
<td>not value</td>
<td>A 3</td>
<td>41</td>
</tr>
<tr>
<td>neg</td>
<td>neg value</td>
<td>A 4</td>
<td>41</td>
</tr>
<tr>
<td>xor</td>
<td>value A xor value B</td>
<td>A 5</td>
<td>41</td>
</tr>
<tr>
<td>xnor</td>
<td>value A xnor value B</td>
<td>A 6</td>
<td>41</td>
</tr>
</tbody>
</table>
2. LIST menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ndF LIST OPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sortA(</td>
<td>sortA(list name [, subordinate list name1, ..., subordinate list name n])</td>
<td>A 1</td>
<td>136</td>
</tr>
<tr>
<td>sortD(</td>
<td>sortD(list name [, subordinate list name1, ..., subordinate list name n])</td>
<td>A 2</td>
<td>136</td>
</tr>
<tr>
<td>dim(</td>
<td>dim(list)</td>
<td>A 3</td>
<td>137</td>
</tr>
<tr>
<td>fill(</td>
<td>fill(value, list)</td>
<td>A 4</td>
<td>137</td>
</tr>
<tr>
<td>seq(</td>
<td>seq(equation, start value, end value [, increment])</td>
<td>A 5</td>
<td>138</td>
</tr>
<tr>
<td>cumul(</td>
<td>cumul list</td>
<td>A 6</td>
<td>138</td>
</tr>
<tr>
<td>df_list</td>
<td>df_list list</td>
<td>A 7</td>
<td>138</td>
</tr>
<tr>
<td>augment(</td>
<td>augment(list 1, list 2)</td>
<td>A 8</td>
<td>139</td>
</tr>
<tr>
<td>list→mat(</td>
<td>list→mat(list 1, ..., list n, matrix name)</td>
<td>A 9</td>
<td>139</td>
</tr>
<tr>
<td>mat→list(</td>
<td>mat→list(matrix name, list name1, ..., list name n)</td>
<td>A 0</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>mat→list(matrix name, column number, list name)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2ndF LIST MATH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min(</td>
<td>min(value A, value B) or min(list)</td>
<td>B 1</td>
<td>140</td>
</tr>
<tr>
<td>max(</td>
<td>max(value A, value B) or max(list)</td>
<td>B 2</td>
<td>140</td>
</tr>
<tr>
<td>mean(</td>
<td>mean(list [, frequency list'])</td>
<td>B 3</td>
<td>140</td>
</tr>
<tr>
<td>median(</td>
<td>median(list [, frequency list'])</td>
<td>B 4</td>
<td>141</td>
</tr>
<tr>
<td>sum(</td>
<td>sum(list [, start number, end number])</td>
<td>B 5</td>
<td>141</td>
</tr>
<tr>
<td>prod(</td>
<td>prod(list [, start number, end number])</td>
<td>B 5</td>
<td>141</td>
</tr>
<tr>
<td>stdDev(</td>
<td>stdDev(list [, frequency list'])</td>
<td>B 7</td>
<td>142</td>
</tr>
<tr>
<td>varian(</td>
<td>varian(list [, frequency list'])</td>
<td>B 8</td>
<td>142</td>
</tr>
<tr>
<td>P StdDev(</td>
<td>PStdDev(list [, frequency list'])</td>
<td>B 9</td>
<td>142</td>
</tr>
<tr>
<td>2ndF LIST L_DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StoLD</td>
<td>StoLD natural number(0-9)</td>
<td>C 1</td>
<td>144</td>
</tr>
<tr>
<td>RclLD</td>
<td>RclLD natural number(0-9)</td>
<td>C 2</td>
<td>145</td>
</tr>
<tr>
<td>2ndF LIST VECTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CrossPro(</td>
<td>CrossPro(list name 1, list name 2)</td>
<td>D 1</td>
<td>143</td>
</tr>
<tr>
<td>DotPro(</td>
<td>DotPro(list name 1, list name 2)</td>
<td>D 2</td>
<td>143</td>
</tr>
</tbody>
</table>

* "list" in the above table means a list or a list name.
3. STAT menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(STAT) EDIT/OPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDIT</td>
<td>No arguments</td>
<td>A ENTER</td>
<td>151</td>
</tr>
<tr>
<td>sortA</td>
<td>sortA(list [, subordinate list 1, ..., subordinate list n])</td>
<td>B 1</td>
<td>161</td>
</tr>
<tr>
<td>sortD</td>
<td>sortD(list [, subordinate list 1, ..., subordinate list n])</td>
<td>B 2</td>
<td>161</td>
</tr>
<tr>
<td>SetList</td>
<td>SetList [list name 1, list name 2, list name 3, ...]</td>
<td>B 3</td>
<td>161</td>
</tr>
<tr>
<td>ClrList</td>
<td>ClrList list name1 [, list name 2, ...]</td>
<td>B 4</td>
<td>161</td>
</tr>
<tr>
<td>(STAT) CALC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1_Stats</td>
<td>1_Stats [x list name [, frequency list]]</td>
<td>C 1</td>
<td>152</td>
</tr>
<tr>
<td>2_Stats</td>
<td>2_Stats [x list name, y list name [, frequency list]]</td>
<td>C 2</td>
<td>152</td>
</tr>
<tr>
<td>ANOVA</td>
<td>ANOVA(list name 1, list name 2 [, ...])</td>
<td>C 3</td>
<td>154</td>
</tr>
<tr>
<td>(STAT) REG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med_Med</td>
<td>Med_Med (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 1</td>
<td>162</td>
</tr>
<tr>
<td>Rg_ax+b</td>
<td>Rg_ax+b (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 2</td>
<td>162</td>
</tr>
<tr>
<td>Rg_ax</td>
<td>Rg_ax (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 3</td>
<td>162</td>
</tr>
<tr>
<td>Rg_a+bx</td>
<td>Rg_a+bx (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 4</td>
<td>162</td>
</tr>
<tr>
<td>Rg_x²</td>
<td>Rg_x² (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 5</td>
<td>162</td>
</tr>
<tr>
<td>Rg_x³</td>
<td>Rg_x³ (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 6</td>
<td>163</td>
</tr>
<tr>
<td>Rg_x⁴</td>
<td>Rg_x⁴ (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 7</td>
<td>163</td>
</tr>
<tr>
<td>Rg_In</td>
<td>Rg_In (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 8</td>
<td>163</td>
</tr>
<tr>
<td>Rg_log</td>
<td>Rg_log (list name for x, list name for y [, frequency list [, equation name to store]])</td>
<td>D 0 9</td>
<td>163</td>
</tr>
</tbody>
</table>

* "list" in the above table means a list or a list name.
Appendix

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_g_{ab^x}$</td>
<td>$R_g_{ab^x}$ (list name for x, list name for y [frequency list] [equation name to store])</td>
<td>D 1 0</td>
<td>163</td>
</tr>
<tr>
<td>$R_g_{ae^{bx}}$</td>
<td>$R_g_{ae^{bx}}$ (list name for x, list name for y [frequency list] [equation name to store])</td>
<td>D 1 1</td>
<td>163</td>
</tr>
<tr>
<td>$R_g_{x^1}$</td>
<td>$R_g_{x^1}$ (list name for x, list name for y [frequency list] [equation name to store])</td>
<td>D 1 2</td>
<td>164</td>
</tr>
<tr>
<td>$R_g_{ax^b}$</td>
<td>$R_g_{ax^b}$ (list name for x, list name for y [frequency list] [equation name to store])</td>
<td>D 1 3</td>
<td>164</td>
</tr>
<tr>
<td>$R_g_{logistic}$</td>
<td>$R_g_{logistic}$ (list name for x, list name for y [frequency list] [equation name to store])</td>
<td>D 1 4</td>
<td>164</td>
</tr>
<tr>
<td>R_g_{sin}</td>
<td>R_g_{sin} ([iterations], list name for x, list name for y [frequency list] [period] [equation name to store])</td>
<td>D 1 5</td>
<td>164</td>
</tr>
</tbody>
</table>

STAT TEST

<table>
<thead>
<tr>
<th>Test</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2 test</td>
<td>No arguments</td>
<td>E 0 1</td>
<td>168</td>
</tr>
<tr>
<td>Ftest2samp</td>
<td>No arguments</td>
<td>E 0 2</td>
<td>169</td>
</tr>
<tr>
<td>Ttest1samp</td>
<td>No arguments</td>
<td>E 0 3</td>
<td>169</td>
</tr>
<tr>
<td>Ttest2samp</td>
<td>No arguments</td>
<td>E 0 4</td>
<td>170</td>
</tr>
<tr>
<td>TtestLinreg</td>
<td>No arguments</td>
<td>E 0 5</td>
<td>171</td>
</tr>
<tr>
<td>Tint1samp</td>
<td>No arguments</td>
<td>E 0 6</td>
<td>172</td>
</tr>
<tr>
<td>Tint2samp</td>
<td>No arguments</td>
<td>E 0 7</td>
<td>172</td>
</tr>
<tr>
<td>Ztest1samp</td>
<td>No arguments</td>
<td>E 0 8</td>
<td>173</td>
</tr>
<tr>
<td>Ztest2samp</td>
<td>No arguments</td>
<td>E 0 9</td>
<td>174</td>
</tr>
<tr>
<td>Ztest1prop</td>
<td>No arguments</td>
<td>E 1 0</td>
<td>175</td>
</tr>
<tr>
<td>Ztest2prop</td>
<td>No arguments</td>
<td>E 1 1</td>
<td>175</td>
</tr>
<tr>
<td>Zint1samp</td>
<td>No arguments</td>
<td>E 1 2</td>
<td>176</td>
</tr>
<tr>
<td>Zint2samp</td>
<td>No arguments</td>
<td>E 1 3</td>
<td>177</td>
</tr>
<tr>
<td>Zint1prop</td>
<td>No arguments</td>
<td>E 1 4</td>
<td>177</td>
</tr>
<tr>
<td>Zint2prop</td>
<td>No arguments</td>
<td>E 1 5</td>
<td>178</td>
</tr>
<tr>
<td>InputList</td>
<td>No arguments</td>
<td>E 1 6</td>
<td>168</td>
</tr>
<tr>
<td>InputStats</td>
<td>No arguments</td>
<td>E 1 7</td>
<td>168</td>
</tr>
</tbody>
</table>

STAT DISTRI

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdnorm(</td>
<td>pdnorm(value [mean, standard deviation])</td>
<td>F 0 1</td>
<td>179</td>
</tr>
</tbody>
</table>
Functions Commands

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{cdfnorm}(lower limit, upper limit[, mean, standard deviation])</td>
<td>F 0 2</td>
<td>179</td>
</tr>
<tr>
<td>\texttt{InvNorm}(probability[, mean, standard deviation])</td>
<td>F 0 3</td>
<td>180</td>
</tr>
<tr>
<td>\texttt{pdfT}(value, degree of freedom)</td>
<td>F 0 4</td>
<td>180</td>
</tr>
<tr>
<td>\texttt{cdfT}(lower limit, upper limit, degree of freedom)</td>
<td>F 0 5</td>
<td>181</td>
</tr>
<tr>
<td>\texttt{pdfX^2}(value, degree of freedom)</td>
<td>F 0 6</td>
<td>181</td>
</tr>
<tr>
<td>\texttt{cdfX^2}(lower limit, upper limit, degree of freedom)</td>
<td>F 0 7</td>
<td>181</td>
</tr>
<tr>
<td>\texttt{pdfF}(value, degree of freedom of numerator, degree of freedom of denominator)</td>
<td>F 0 8</td>
<td>182</td>
</tr>
<tr>
<td>\texttt{cdfF}(lower limit, upper limit, degree of freedom of numerator, degree of freedom of denominator)</td>
<td>F 0 9</td>
<td>182</td>
</tr>
<tr>
<td>\texttt{pdfbin}(number of trial, success probability[, success numbers])</td>
<td>F 1 0</td>
<td>183</td>
</tr>
<tr>
<td>\texttt{cdfbin}(number of trial, success probability[, success numbers])</td>
<td>F 1 1</td>
<td>183</td>
</tr>
<tr>
<td>\texttt{pdfpoi}(mean, value)</td>
<td>F 1 2</td>
<td>183</td>
</tr>
<tr>
<td>\texttt{cdfpoi}(mean, value)</td>
<td>F 1 3</td>
<td>184</td>
</tr>
<tr>
<td>\texttt{pdfgeo}(success probability, value)</td>
<td>F 1 4</td>
<td>184</td>
</tr>
<tr>
<td>\texttt{cdfgeo}(success probability, value)</td>
<td>F 1 5</td>
<td>184</td>
</tr>
</tbody>
</table>

4. STAT PLOT menus

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{PLOT1/PLOT2/PLOT3/LIMIT/ON/OFF}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLOT1</td>
<td>No arguments</td>
<td>A ENTER</td>
</tr>
<tr>
<td>PLOT2</td>
<td>No arguments</td>
<td>B ENTER</td>
</tr>
<tr>
<td>PLOT3</td>
<td>No arguments</td>
<td>C ENTER</td>
</tr>
<tr>
<td>SET</td>
<td>No arguments</td>
<td>D 1</td>
</tr>
<tr>
<td>LimON</td>
<td>No arguments</td>
<td>D 2</td>
</tr>
<tr>
<td>LimOFF</td>
<td>No arguments</td>
<td>D 3</td>
</tr>
<tr>
<td>PlotON</td>
<td>PlotON [number]</td>
<td>E 1</td>
</tr>
<tr>
<td>PlotOFF</td>
<td>PlotOFF [number]</td>
<td>E 2</td>
</tr>
<tr>
<td>\texttt{(in STAT PLOT mode) HIST/B.L./N.P./N.D./BOX/PIE/S.D./XYLINE}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist</td>
<td>No arguments</td>
<td>A 1</td>
</tr>
<tr>
<td>Broken *</td>
<td>No arguments</td>
<td>B 1</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken +</td>
<td>No arguments</td>
<td>B 2</td>
<td>156</td>
</tr>
<tr>
<td>Broken □</td>
<td>No arguments</td>
<td>B 3</td>
<td>156</td>
</tr>
<tr>
<td>Norm - X</td>
<td>No arguments</td>
<td>C 1</td>
<td>156</td>
</tr>
<tr>
<td>Norm+ X</td>
<td>No arguments</td>
<td>C 2</td>
<td>156</td>
</tr>
<tr>
<td>Norm - X</td>
<td>No arguments</td>
<td>C 3</td>
<td>156</td>
</tr>
<tr>
<td>Norm+ Y</td>
<td>No arguments</td>
<td>C 4</td>
<td>156</td>
</tr>
<tr>
<td>Norm- Y</td>
<td>No arguments</td>
<td>C 5</td>
<td>156</td>
</tr>
<tr>
<td>NormDis</td>
<td>No arguments</td>
<td>D 1</td>
<td>156</td>
</tr>
<tr>
<td>Box</td>
<td>No arguments</td>
<td>E 1</td>
<td>157</td>
</tr>
<tr>
<td>MBox -</td>
<td>No arguments</td>
<td>E 2</td>
<td>157</td>
</tr>
<tr>
<td>MBox+</td>
<td>No arguments</td>
<td>E 3</td>
<td>157</td>
</tr>
<tr>
<td>MBox□</td>
<td>No arguments</td>
<td>E 4</td>
<td>157</td>
</tr>
<tr>
<td>Pie</td>
<td>No arguments</td>
<td>F 1</td>
<td>158</td>
</tr>
<tr>
<td>Pie%</td>
<td>No arguments</td>
<td>F 2</td>
<td>158</td>
</tr>
<tr>
<td>Scatter -</td>
<td>No arguments</td>
<td>G 1</td>
<td>158</td>
</tr>
<tr>
<td>Scatter +</td>
<td>No arguments</td>
<td>G 2</td>
<td>158</td>
</tr>
<tr>
<td>Scatter□</td>
<td>No arguments</td>
<td>G 3</td>
<td>158</td>
</tr>
<tr>
<td>xLine-</td>
<td>No arguments</td>
<td>H 1</td>
<td>158</td>
</tr>
<tr>
<td>xLine+</td>
<td>No arguments</td>
<td>H 2</td>
<td>158</td>
</tr>
<tr>
<td>xLine□</td>
<td>No arguments</td>
<td>H 3</td>
<td>158</td>
</tr>
</tbody>
</table>

5. DRAW menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CtrlDraw</td>
<td>No arguments</td>
<td>A 0 1</td>
<td>96</td>
</tr>
<tr>
<td>Line(x, y)</td>
<td>x-coordinate of start point, y-coordinate of start point, x-coordinate of end point, y-coordinate of end point [0]/</td>
<td>A 0 2</td>
<td>97</td>
</tr>
<tr>
<td>H_line</td>
<td>y-value</td>
<td>A 0 3</td>
<td>99</td>
</tr>
<tr>
<td>V_line</td>
<td>x-value</td>
<td>A 0 4</td>
<td>100</td>
</tr>
<tr>
<td>T_line(equation, x)</td>
<td>T_line(equation, x-value)</td>
<td>A 0 5</td>
<td>100</td>
</tr>
<tr>
<td>N_line(equation, x)</td>
<td>N_line(equation, x-value)</td>
<td>A 0 6</td>
<td>101</td>
</tr>
</tbody>
</table>

254
<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw</td>
<td>Draw equation</td>
<td>A 0 7</td>
<td>102</td>
</tr>
<tr>
<td>Shade</td>
<td>Shade (equation 1, equation 2 [, begin, end])</td>
<td>A 0 8</td>
<td>102</td>
</tr>
<tr>
<td>DrawInv</td>
<td>DrawInv equation</td>
<td>A 0 9</td>
<td>103</td>
</tr>
<tr>
<td>Circle</td>
<td>Circle (x-coordinate of center, y-coordinate of center, radius)</td>
<td>A 1 0</td>
<td>103</td>
</tr>
<tr>
<td>Text</td>
<td>Text (column, row, "character strings") Text (column, row, variable)</td>
<td>A 1 1</td>
<td>104</td>
</tr>
</tbody>
</table>

2ndF DRAW POINT

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PntON</td>
<td>PntON (x-coordinate, y-coordinate)</td>
<td>B 1</td>
<td>105</td>
</tr>
<tr>
<td>PntOFF</td>
<td>PntOFF (x-coordinate, y-coordinate)</td>
<td>B 2</td>
<td>105</td>
</tr>
<tr>
<td>PntCHG</td>
<td>PntCHG (x-coordinate, y-coordinate)</td>
<td>B 3</td>
<td>105</td>
</tr>
<tr>
<td>PxION</td>
<td>PxION (column, row)</td>
<td>B 4</td>
<td>106</td>
</tr>
<tr>
<td>PxIOFF</td>
<td>PxIOFF (column, row)</td>
<td>B 5</td>
<td>106</td>
</tr>
<tr>
<td>PxICHG</td>
<td>PxICHG (column, row)</td>
<td>B 6</td>
<td>106</td>
</tr>
<tr>
<td>PxITST</td>
<td>PxITST (column, row)</td>
<td>B 7</td>
<td>106</td>
</tr>
</tbody>
</table>

2ndF DRAW ON/OFF/LINE/G DATA/PICT/SHADE

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrawON</td>
<td>DrawON [equation number 1, equation number 2, ...]</td>
<td>C 1</td>
<td>107</td>
</tr>
<tr>
<td>DrawOFF</td>
<td>DrawOFF [equation number 1, equation number 2, ...]</td>
<td>C 2</td>
<td>107</td>
</tr>
<tr>
<td>LINE</td>
<td>No arguments</td>
<td>D ENTER</td>
<td>107</td>
</tr>
<tr>
<td>StoGD</td>
<td>StoGD number</td>
<td>E 1</td>
<td>108</td>
</tr>
<tr>
<td>RclGD</td>
<td>RclGD number</td>
<td>E 2</td>
<td>108</td>
</tr>
<tr>
<td>StoPict</td>
<td>StoPict number</td>
<td>F 1</td>
<td>109</td>
</tr>
<tr>
<td>RclPict</td>
<td>RclPict number</td>
<td>F 2</td>
<td>109</td>
</tr>
<tr>
<td>SET</td>
<td>No arguments</td>
<td>G 1</td>
<td>110</td>
</tr>
<tr>
<td>INITIAL</td>
<td>No arguments</td>
<td>G 2</td>
<td>110</td>
</tr>
</tbody>
</table>

6. ZOOM menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOOM ZOOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto</td>
<td>No arguments</td>
<td>A 1</td>
<td>75</td>
</tr>
<tr>
<td>Zm_Auto</td>
<td>No arguments</td>
<td>A 2</td>
<td>75</td>
</tr>
</tbody>
</table>

| Box Zm_Box | No arguments | A 2 | 75 |
Appendix

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Zm_In</td>
<td>No arguments</td>
<td>A 3</td>
<td>76</td>
</tr>
<tr>
<td>Out Zm_Out</td>
<td>No arguments</td>
<td>A 4</td>
<td>76</td>
</tr>
<tr>
<td>Default Zm_Devult</td>
<td>No arguments</td>
<td>A 5</td>
<td>76</td>
</tr>
<tr>
<td>Square Zm_Square</td>
<td>No arguments</td>
<td>A 6</td>
<td>76</td>
</tr>
<tr>
<td>Dec Zm_Dec</td>
<td>No arguments</td>
<td>A 7</td>
<td>76</td>
</tr>
<tr>
<td>Int Zm_Int</td>
<td>No arguments</td>
<td>A 8</td>
<td>76</td>
</tr>
<tr>
<td>Stat Zm_Stat</td>
<td>No arguments</td>
<td>A 9</td>
<td>76</td>
</tr>
</tbody>
</table>

[ZOOM] FACTOR/POWER

<table>
<thead>
<tr>
<th></th>
<th>Syntax</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR</td>
<td>No arguments</td>
<td>B ENTER</td>
</tr>
<tr>
<td>(x^2)</td>
<td>No arguments</td>
<td>C 1</td>
</tr>
<tr>
<td>(x^{-1})</td>
<td>No arguments</td>
<td>C 2</td>
</tr>
<tr>
<td>(\sqrt{x})</td>
<td>No arguments</td>
<td>C 3</td>
</tr>
</tbody>
</table>

[ZOOM] EXP

<table>
<thead>
<tr>
<th></th>
<th>Syntax</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^x)</td>
<td>No arguments</td>
<td>D 1</td>
</tr>
<tr>
<td>(e^x)</td>
<td>No arguments</td>
<td>D 2</td>
</tr>
<tr>
<td>(\log x)</td>
<td>No arguments</td>
<td>D 3</td>
</tr>
<tr>
<td>(\ln x)</td>
<td>No arguments</td>
<td>D 4</td>
</tr>
</tbody>
</table>

[ZOOM] TRIG

<table>
<thead>
<tr>
<th></th>
<th>Syntax</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin x)</td>
<td>No arguments</td>
<td>E 1</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>No arguments</td>
<td>E 2</td>
</tr>
<tr>
<td>(\tan x)</td>
<td>No arguments</td>
<td>E 3</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin^{-1} x$</td>
<td>No arguments</td>
<td>E 4</td>
<td>78</td>
</tr>
<tr>
<td>$Z_m\sin^{-1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\cos^{-1} x$</td>
<td>No arguments</td>
<td>E 5</td>
<td>78</td>
</tr>
<tr>
<td>$Z_m\cos^{-1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tan^{-1} x$</td>
<td>No arguments</td>
<td>E 6</td>
<td>78</td>
</tr>
<tr>
<td>$Z_m\tan^{-1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ZOOM HYP/STO/RCL

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sinh x$</td>
<td>No arguments</td>
<td>F 1</td>
</tr>
<tr>
<td>$Z_m\sinh$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\cosh x$</td>
<td>No arguments</td>
<td>F 2</td>
</tr>
<tr>
<td>$Z_m\cosh$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tanh x$</td>
<td>No arguments</td>
<td>F 3</td>
</tr>
<tr>
<td>$Z_m\tanh$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sinh^{-1} x$</td>
<td>No arguments</td>
<td>F 4</td>
</tr>
<tr>
<td>$Z_m\sinh^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\cosh^{-1} x$</td>
<td>No arguments</td>
<td>F 5</td>
</tr>
<tr>
<td>$Z_m\cosh^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tanh^{-1} x$</td>
<td>No arguments</td>
<td>F 6</td>
</tr>
<tr>
<td>$Z_m\tanh^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StoWin</td>
<td>No arguments</td>
<td>G 1</td>
</tr>
<tr>
<td>RclWin</td>
<td>No arguments</td>
<td>H 1</td>
</tr>
<tr>
<td>PreWin</td>
<td>No arguments</td>
<td>H 2</td>
</tr>
</tbody>
</table>

7. CALC menus

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2ndF$ CALC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>$Value x$</td>
<td>A 1</td>
</tr>
<tr>
<td>Intsect</td>
<td>No arguments</td>
<td>A 2</td>
</tr>
<tr>
<td>Minimum</td>
<td>No arguments</td>
<td>A 3</td>
</tr>
<tr>
<td>Maximum</td>
<td>No arguments</td>
<td>A 4</td>
</tr>
<tr>
<td>Y_zero</td>
<td>No arguments</td>
<td>A 5</td>
</tr>
<tr>
<td>Y_Incpt</td>
<td>No arguments</td>
<td>A 6</td>
</tr>
<tr>
<td>Inflec</td>
<td>No arguments</td>
<td>A 7</td>
</tr>
<tr>
<td>$f dx$</td>
<td>No arguments</td>
<td>A 8</td>
</tr>
</tbody>
</table>
Appendix

8. SLIDE SHOW menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIDE SHOW</td>
<td>CURR/PLAY/NEW/SELECT/EDIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURR</td>
<td>No arguments</td>
<td>A ENTER</td>
<td>119</td>
</tr>
<tr>
<td>PLAY</td>
<td>No arguments</td>
<td>B</td>
<td>119</td>
</tr>
<tr>
<td>NEW</td>
<td>No arguments</td>
<td>C ENTER</td>
<td>119</td>
</tr>
<tr>
<td>SELECT</td>
<td>No arguments</td>
<td>D</td>
<td>119</td>
</tr>
<tr>
<td>MOVE</td>
<td>No arguments</td>
<td>E 1</td>
<td>119</td>
</tr>
<tr>
<td>DEL</td>
<td>No arguments</td>
<td>E 2</td>
<td>120</td>
</tr>
<tr>
<td>RENAME</td>
<td>No arguments</td>
<td>E 3</td>
<td>120</td>
</tr>
</tbody>
</table>

9. PRGM menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRGM</td>
<td>EXEC</td>
<td>No arguments</td>
<td>A</td>
</tr>
<tr>
<td>EDIT</td>
<td>No arguments</td>
<td>B</td>
<td>204</td>
</tr>
<tr>
<td>NEW</td>
<td>No arguments</td>
<td>C ENTER</td>
<td>204</td>
</tr>
<tr>
<td>V_INDEX</td>
<td>No arguments</td>
<td>D</td>
<td>204</td>
</tr>
<tr>
<td>PRGM (in the Programming mode) PRGM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print</td>
<td>Print variable</td>
<td>A 1</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Print "character strings ['"]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>"characters ['"]</td>
<td>A 2</td>
<td>208</td>
</tr>
<tr>
<td>Input</td>
<td>Input ['prompt strings',] variable</td>
<td>A 3</td>
<td>208</td>
</tr>
<tr>
<td>Wait</td>
<td>Wait [natural number]</td>
<td>A 4</td>
<td>209</td>
</tr>
<tr>
<td>Rem</td>
<td>Rem comments</td>
<td>A 5</td>
<td>209</td>
</tr>
<tr>
<td>End</td>
<td>No arguments</td>
<td>A 6</td>
<td>209</td>
</tr>
<tr>
<td>Key</td>
<td>Key variable</td>
<td>A 7</td>
<td>209</td>
</tr>
<tr>
<td>PRGM (in the Programming mode) BRNCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label</td>
<td>Label label name</td>
<td>B 0 1</td>
<td>214</td>
</tr>
<tr>
<td>Goto</td>
<td>Goto label name</td>
<td>B 0 2</td>
<td>214</td>
</tr>
<tr>
<td>If</td>
<td>If conditional statements</td>
<td>B 0 3</td>
<td>214</td>
</tr>
<tr>
<td>Then</td>
<td>Then commands</td>
<td>B 0 4</td>
<td>214</td>
</tr>
<tr>
<td>Else</td>
<td>[Else commands]</td>
<td>B 0 5</td>
<td>214</td>
</tr>
<tr>
<td>EndIf</td>
<td>EndIf</td>
<td>B 0 6</td>
<td>214</td>
</tr>
<tr>
<td>Functions Commands</td>
<td>Syntax</td>
<td>Keystrokes</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>For</td>
<td>For variable, start value, end value [, increment] commands</td>
<td>B 0 7</td>
<td>215</td>
</tr>
<tr>
<td>Next</td>
<td>Next</td>
<td>B 0 8</td>
<td>215</td>
</tr>
<tr>
<td>While</td>
<td>While conditional statements commands</td>
<td>B 0 9</td>
<td>215</td>
</tr>
<tr>
<td>WEnd</td>
<td>WEnd</td>
<td>B 1 0</td>
<td>215</td>
</tr>
<tr>
<td>Gosub</td>
<td>Gosub label name</td>
<td>B 1 1</td>
<td>215</td>
</tr>
<tr>
<td>Return</td>
<td>No arguments</td>
<td>B 1 2</td>
<td>215</td>
</tr>
</tbody>
</table>

PRGM (in the Programming mode) SCRN

ClrT	No arguments	C 1	210
ClrG	No arguments	C 2	210
DispT	No arguments	C 3	210
DispG	No arguments	C 4	210

PRGM (in the Programming mode) I/O

| Get | Get variable | D 1 | 210 |
| Send | Send variable | D 2 | 210 |

PRGM (in the Programming mode) SETUP

Rect	No arguments	E 0 1	210
Param	No arguments	E 0 2	210
Polar	No arguments	E 0 3	210
Web	No arguments	E 0 4	211
Time	No arguments	E 0 5	211
uv	No arguments	E 0 6	211
uw	No arguments	E 0 7	211
vw	No arguments	E 0 8	211
Deg	No arguments	E 0 9	211
Rad	No arguments	E 1 0	211
Grad	No arguments	E 1 1	211
FloatPt	No arguments	E 1 2	211
Fix	No arguments	E 1 3	211
Sci	No arguments	E 1 4	211
Eng	No arguments	E 1 5	211
Tab	Tab integer	E 1 6	211
Appendix

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>No arguments</td>
<td>E 1 7</td>
<td>211</td>
</tr>
<tr>
<td>Mixed</td>
<td>No arguments</td>
<td>E 1 8</td>
<td>211</td>
</tr>
<tr>
<td>Impropr</td>
<td>No arguments</td>
<td>E 1 9</td>
<td>211</td>
</tr>
<tr>
<td>x ± yi</td>
<td>No arguments</td>
<td>E 2 0</td>
<td>211</td>
</tr>
<tr>
<td>r ≤ θ</td>
<td>No arguments</td>
<td>E 2 1</td>
<td>211</td>
</tr>
</tbody>
</table>

PRGM (in the Programming mode) FORMAT

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RectCursor</td>
<td>No arguments</td>
<td>F 0 1</td>
<td>212</td>
</tr>
<tr>
<td>PolarCursor</td>
<td>No arguments</td>
<td>F 0 2</td>
<td>212</td>
</tr>
<tr>
<td>ExprON</td>
<td>No arguments</td>
<td>F 0 3</td>
<td>212</td>
</tr>
<tr>
<td>ExprOFF</td>
<td>No arguments</td>
<td>F 0 4</td>
<td>212</td>
</tr>
<tr>
<td>Y’ON</td>
<td>No arguments</td>
<td>F 0 5</td>
<td>212</td>
</tr>
<tr>
<td>Y’OFF</td>
<td>No arguments</td>
<td>F 0 6</td>
<td>212</td>
</tr>
<tr>
<td>AxisON</td>
<td>No arguments</td>
<td>F 0 7</td>
<td>212</td>
</tr>
<tr>
<td>AxisOFF</td>
<td>No arguments</td>
<td>F 0 8</td>
<td>212</td>
</tr>
<tr>
<td>GridON</td>
<td>No arguments</td>
<td>F 0 9</td>
<td>212</td>
</tr>
<tr>
<td>GridOFF</td>
<td>No arguments</td>
<td>F 1 0</td>
<td>212</td>
</tr>
<tr>
<td>Connect</td>
<td>No arguments</td>
<td>F 1 1</td>
<td>212</td>
</tr>
<tr>
<td>Dot</td>
<td>No arguments</td>
<td>F 1 2</td>
<td>212</td>
</tr>
<tr>
<td>Sequen</td>
<td>No arguments</td>
<td>F 1 3</td>
<td>212</td>
</tr>
<tr>
<td>Simul</td>
<td>No arguments</td>
<td>F 1 4</td>
<td>212</td>
</tr>
</tbody>
</table>

PRGM (in the Programming mode) S_PLOT

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1t1</td>
<td>P1t1(graph type, X list name [, Y list name, frequency list])</td>
<td>G 1</td>
<td>213</td>
</tr>
<tr>
<td>P1t2</td>
<td>P1t2(graph type, X list name [, Y list name, frequency list])</td>
<td>G 2</td>
<td>213</td>
</tr>
<tr>
<td>P1t3</td>
<td>P1t3(graph type, X list name [, Y list name, frequency list])</td>
<td>G 3</td>
<td>213</td>
</tr>
<tr>
<td>PlotON</td>
<td>PlotON [number]</td>
<td>G 4</td>
<td>213</td>
</tr>
<tr>
<td>PlotOFF</td>
<td>PlotOFF [number]</td>
<td>G 5</td>
<td>213</td>
</tr>
<tr>
<td>LimON</td>
<td>No arguments</td>
<td>G 6</td>
<td>213</td>
</tr>
<tr>
<td>LimOFF</td>
<td>No arguments</td>
<td>G 7</td>
<td>213</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRGM (in the Programming mode) COPY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StoLine</td>
<td>No arguments</td>
<td>H 1</td>
<td>216</td>
</tr>
<tr>
<td>RclLine</td>
<td>No arguments</td>
<td>H 2</td>
<td>216</td>
</tr>
</tbody>
</table>

10. MATRIX menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ndF MATRIX NAME</td>
<td></td>
<td>A 1</td>
<td>131</td>
</tr>
<tr>
<td>mat A</td>
<td>[(row, column)]</td>
<td>A 1</td>
<td>131</td>
</tr>
<tr>
<td>mat B</td>
<td>[(row, column)]</td>
<td>A 2</td>
<td>131</td>
</tr>
<tr>
<td>mat C</td>
<td>[(row, column)]</td>
<td>A 3</td>
<td>131</td>
</tr>
<tr>
<td>mat D</td>
<td>[(row, column)]</td>
<td>A 4</td>
<td>131</td>
</tr>
<tr>
<td>mat E</td>
<td>[(row, column)]</td>
<td>A 5</td>
<td>131</td>
</tr>
<tr>
<td>mat F</td>
<td>[(row, column)]</td>
<td>A 6</td>
<td>131</td>
</tr>
<tr>
<td>mat G</td>
<td>[(row, column)]</td>
<td>A 7</td>
<td>131</td>
</tr>
<tr>
<td>mat H</td>
<td>[(row, column)]</td>
<td>A 8</td>
<td>131</td>
</tr>
<tr>
<td>mat I</td>
<td>[(row, column)]</td>
<td>A 9</td>
<td>131</td>
</tr>
<tr>
<td>mat J</td>
<td>[(row, column)]</td>
<td>A 0</td>
<td>131</td>
</tr>
</tbody>
</table>

2ndF MATRIX EDIT		B 1	123
mat A	No arguments	B 1	123
mat B	No arguments	B 2	123
mat C	No arguments	B 3	123
mat D	No arguments	B 4	123
mat E	No arguments	B 5	123
mat F	No arguments	B 6	123
mat G	No arguments	B 7	123
mat H	No arguments	B 8	123
mat I	No arguments	B 9	123
mat J	No arguments	B 0	123

2ndF MATRIX OPE		C 0 1	126
dim()	dim(matrix name)	C 0 1	126
fill()	fill(value, matrix name)	C 0 2	126
cumul	cumul matrix name	C 0 3	127
Appendix

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>augment()</td>
<td>augment(matrix name A, matrix name B)</td>
<td>C 0 4</td>
<td>127</td>
</tr>
<tr>
<td>identity</td>
<td>identity dimension value</td>
<td>C 0 5</td>
<td>127</td>
</tr>
<tr>
<td>row_swap()</td>
<td>row_swap(matrix name, row number, row number)</td>
<td>C 0 6</td>
<td>127</td>
</tr>
<tr>
<td>row_plus()</td>
<td>row_plus(matrix name, row number, row number)</td>
<td>C 0 7</td>
<td>128</td>
</tr>
<tr>
<td>row_mult()</td>
<td>row_mult(multiplied number, matrix name, row number)</td>
<td>C 0 8</td>
<td>128</td>
</tr>
<tr>
<td>row_m.p.()</td>
<td>row_m.p.((multiplied number, matrix name, row number, row number)</td>
<td>C 0 9</td>
<td>128</td>
</tr>
<tr>
<td>mat→list()</td>
<td>mat→list(matrix name, list name 1, ..., list name n)</td>
<td>C 1 1</td>
<td>129</td>
</tr>
<tr>
<td>mat→list()</td>
<td>mat→list(matrix name, column number, list name)</td>
<td>C 1 2</td>
<td>129</td>
</tr>
<tr>
<td>det</td>
<td>det matrix name</td>
<td>D 1</td>
<td>130</td>
</tr>
<tr>
<td>trans</td>
<td>trans matrix name</td>
<td>D 2</td>
<td>130</td>
</tr>
<tr>
<td>rowEF</td>
<td>rowEF matrix name</td>
<td>D 3</td>
<td>130</td>
</tr>
<tr>
<td>rowEF</td>
<td>rowEF matrix name</td>
<td>D 4</td>
<td>130</td>
</tr>
<tr>
<td>[:</td>
<td>No arguments</td>
<td>E 1</td>
<td>131</td>
</tr>
<tr>
<td>[:</td>
<td>No arguments</td>
<td>E 2</td>
<td>131</td>
</tr>
</tbody>
</table>

11. FINANCE menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLVER</td>
<td>(TVM SOLVER screen appears)</td>
<td>A ENTER</td>
<td>187</td>
</tr>
<tr>
<td>slv_pmt</td>
<td>slv_pmt [(N, I%, PV, FV, P/Y, C/Y)]</td>
<td>B 0 1</td>
<td>191</td>
</tr>
<tr>
<td>slv_I%</td>
<td>slv_I% [(N, PV, PMT, FV, P/Y, C/Y)]</td>
<td>B 0 2</td>
<td>191</td>
</tr>
<tr>
<td>slv_PV</td>
<td>slv_PV [(N, I%, PMT, FV, P/Y, C/Y)]</td>
<td>B 0 3</td>
<td>191</td>
</tr>
<tr>
<td>slv_N</td>
<td>slv_N [(I%, PV, PMT, FV, P/Y, C/Y)]</td>
<td>B 0 4</td>
<td>191</td>
</tr>
<tr>
<td>slv_FV</td>
<td>slv_FV [(N, I%, PV, PMT, F/Y, C/Y)]</td>
<td>B 0 5</td>
<td>191</td>
</tr>
<tr>
<td>Npv(</td>
<td>Npv(interest rate, initial investment, list of following collected investment {, frequency list})</td>
<td>B 0 6</td>
<td>192</td>
</tr>
<tr>
<td>Functions Commands</td>
<td>Syntax</td>
<td>Keystrokes</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Irr()</td>
<td>Irr(initial investment, list of following collected investment [, frequency list] [, assumed revenue rate])</td>
<td>B 0 7</td>
<td>192</td>
</tr>
<tr>
<td>Bal()</td>
<td>Bal(number of payments [, decimal place to round])</td>
<td>B 0 8</td>
<td>193</td>
</tr>
<tr>
<td>ΣPrt()</td>
<td>ΣPrt(initial number of payments, end number of payments [, decimal place to round])</td>
<td>B 0 9</td>
<td>193</td>
</tr>
<tr>
<td>ΣInt()</td>
<td>ΣInt(initial number of payments, end number of payments [, decimal place to round])</td>
<td>B 1 0</td>
<td>193</td>
</tr>
<tr>
<td>→Apr()</td>
<td>→Apr(effective interest rate, number of settlements)</td>
<td>B 1 1</td>
<td>194</td>
</tr>
<tr>
<td>→Eff()</td>
<td>→Eff(nominal interest rate, number of settlements)</td>
<td>B 1 2</td>
<td>194</td>
</tr>
<tr>
<td>days()</td>
<td>days(start month, day year, end month, day year) days(day month, year, day month, year)</td>
<td>B 1 3</td>
<td>194</td>
</tr>
</tbody>
</table>

2ndF FINANCE PERIOD

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PmtEnd</td>
<td>No arguments</td>
<td>C 1</td>
<td>190</td>
</tr>
<tr>
<td>PmtBegin</td>
<td>No arguments</td>
<td>C 2</td>
<td>190</td>
</tr>
</tbody>
</table>

2ndF FINANCE VARS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>No arguments</td>
<td>D 1</td>
<td>195</td>
</tr>
<tr>
<td>I%</td>
<td>No arguments</td>
<td>D 2</td>
<td>195</td>
</tr>
<tr>
<td>PV</td>
<td>No arguments</td>
<td>D 3</td>
<td>195</td>
</tr>
<tr>
<td>PMT</td>
<td>No arguments</td>
<td>D 4</td>
<td>195</td>
</tr>
<tr>
<td>FV</td>
<td>No arguments</td>
<td>D 5</td>
<td>195</td>
</tr>
<tr>
<td>P/Y</td>
<td>No arguments</td>
<td>D 6</td>
<td>195</td>
</tr>
<tr>
<td>C/Y</td>
<td>No arguments</td>
<td>D 7</td>
<td>195</td>
</tr>
</tbody>
</table>

12. TOOL menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ndF TOOL NBASE/SYSTEM/POLY</td>
<td>No arguments</td>
<td>A ENTER</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>No arguments</td>
<td>B 2</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>No arguments</td>
<td>B 3</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>No arguments</td>
<td>B 4</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>No arguments</td>
<td>B 5</td>
<td>66</td>
</tr>
</tbody>
</table>
13. SOLVER menus

<table>
<thead>
<tr>
<th>Functions Commands</th>
<th>Syntax</th>
<th>Keystrokes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2ndF) SOLVER (in the Solver mode) METHOD/EQTN/SAVE/RENAME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation</td>
<td>No arguments</td>
<td>A 1</td>
<td>196</td>
</tr>
<tr>
<td>Newton&Bisect</td>
<td>No arguments</td>
<td>A 2</td>
<td>198</td>
</tr>
<tr>
<td>Graphic</td>
<td>No arguments</td>
<td>A 3</td>
<td>200</td>
</tr>
<tr>
<td>EQTN</td>
<td>No arguments</td>
<td>B</td>
<td>203</td>
</tr>
<tr>
<td>SAVE</td>
<td>No arguments</td>
<td>C ENTER</td>
<td>202</td>
</tr>
<tr>
<td>RENAME</td>
<td>No arguments</td>
<td>D</td>
<td>202</td>
</tr>
</tbody>
</table>